Study 1

4-Week Oral Toxicity Study in Rats Followed by a 2-Week Recovery Period, March 4, 2011

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

FINAL REPORT

VOLUME I OF II

Total number of pages Volume I: 141 Total number of pages Volume II: 246 Total number of pages: 387

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

FINAL REPORT

We, the undersigned, were responsible for the preparation of this report.

COMPLIANCE STATEMENT

We, the undersigned, hereby declare that the following report constitutes a true and faithful account of the procedures adopted, and the results obtained in the performance of the study. With the exception of the historical control data, that were not revised by Q.A., all other aspects of the study conducted by were performed in accordance with:

- A. Decreto Legislativo 27 Gennaio 1992 n. 120, Adoption of 88/320/EEC and 90/18/EEC Directives on the inspection and verification of good laboratory practice (G.U. 18 Febbraio 1992 n. 40) and subsequent revisions.
- B. Directive 2004/10/EC of European Parliament and of the Council of 11 February 2004. On the harmonisation of laws, regulations and administrative provisions relating to the application of the principles of good laboratory practice and the verification of their applications for tests on chemical substances.
- C. ENV/MC/CHEM(98)17 OECD principles on Good Laboratory Practice (as revised in 1997).

13

QUALITY ASSURANCE STATEMENT

(Relevant to those aspects of the study conducted by

Study phases monitored by	Quality Assurance Inspections (Day Month Year)				
According to current relevant Standard Operating Procedures	Inspection	Report to Study Director	Report to Company Management		
PROTOCOL CHECK	24.03.2005	24.03.2005	24.03.2005		
STUDY-BASED INSPECTIONS RELATED TO THIS TYPE OF STUDY					
Allocation	24.03.2005	29.03.2005	29.03.2005		
Dose preparation	01.04.2005	04.04.2005	04.04.2004		
Dosing (oral)	31.03.2005	20.04.2005	22.04.2005		
Pre post dose observation	31.03.2005	22.04.2005	22.04.2005		
Body weight	07.04.2005	01,06.2005	09.06.2005		
Food consumption	21.04.2005	22.04.2005	22.04.2005		
Clinical observations	05.04.2005	07.04.2005	07.04.2005		
Functional observation battery	05.04.2005	07.04.2005	07.04.2005		
Sensory reactivity to stimuli	22.04.2005	13.05.2005	13.05.2005		
Blood sampling	28.04.2005	01.06.2005	09.06.2005		
Urine collection	28.04.2005	29.04.2005	29.04.2005		
Timed bleed	15.04.2005	22.04.2005	22.04.2005		

QA inspection regarding Analytical Chemistry, Histology and Clinical Pathology Departments as well as regarding other routine activity not directly related to this study are carried out as process-based inspections. The relevant documentation is kept on file although specific inspection dates are not reported here.

28.04.2005

Associated laboratories and support functions are subject to regular facility inspections.

FINAL REPORT

Review of this report by found the reported methods and procedures to describe those used and the results to constitute an accurate representation of the recorded raw data.

Addendum VII Historical control data was not verified by QAU.

17 Oct 2006

09.06.2005

01.06.2005

Necropsy

1.	SUM	MARY	8
2.	INTR	ODUCTION	11
3.	TEST	TITEM	12
4.	MET	HODS	13
	4.1	Test system	13
	4.1.1	Animal supply and acclimatisation	13
	412	Animal husbandry	13
	413	Allocation to groups	13
	4.2	Treatment	14
		Selection of dose levels	14
	422	Dose levels, group size and identification	14
	423	Administration of test item	14
	424	Duration of treatment	15
	4.3	In vivo observations	15
	431	Mortality	15
	432	Pre- and post-dose observations (Main groups)	15
	433	Clinical signs and neurotoxicity assessment (Main groups)	15
	434	Motor activity assessment (MA) (Main groups)	16
	435	Body weight	16
	436	Food consumption (Main groups)	16
	4.4	Clinical pathology investigations (Main groups)	16
		Haematology	17
	4.4.2	Clinical chemistry	17
	1.7.2	Urinalysis	17
	4.5	Toxicokinetics (Satellite group)	18
	4.6	Terminal studies	19
		Euthanasia	
	4.6.1	Necropsy (Main groups)	19
	4.6.2	Organ weights (Main groups)	19
	4.6.5	Tissues fixed and preserved (Main groups)	19
	4.0.4	Histopathological examination	19
	4.0.5	Annex 1 of study protocol	20
	4.0.0	Statistical analysis	20
	4.7	Deviations from protocol	21
	4.0	Archives	21
5.		ULTS	22
3.	5.1	Mortality	22
	5.1	Pre- and post-dose observations and weekly clinical signs	
	3.Z (One)	n field measurements)	22
		Sensory reaction to stimuli and motor activity	22
	5.3		22 22
	5.4	Body weight Food consumption	22
	5.5	Haematology	23
	5.6	Clinical chemistry	23 つる
	5.7	Urinalysis	23 2 <i>A</i>
	5.8	Urinalysis	24 つル
	5.9	Toxicokinetic analysis	24

Contents - Volume I

	P	age
	5.10 Organ weights	24
	5.11 Macroscopic observations	25
	5.12 Microscopic observations	25
6.	CONCLUSION	27
	Figures	
FIGU	JRE 1 - Group and cage arrangement on battery	29
FIGU	JRF 2.1 - Body weight versus day of study - Males	31
FIGU	JRE 2.2 - Body weight versus day of study - Females	32
FIGU	JRE 3 - Plasma levels	33
	Tables	
TAB	LE 1.1 - Clinical signs - During treatment - Group incidence	38
TAB!	LE 1.2 - Clinical signs - During recovery - Group incidence	44
TAB	LE 2.1 - Motor activity - At the end of treatment - Group mean data	50
TAB	LE 2.2 - Motor activity - At the end of recovery - Group mean data	52
TAB	LE 3.1 - Body weight (g) - During treatment - Group mean data	54
TAB]	LE 3.2 - Body weight (g) - During recovery - Group mean data	56
TAB	LE 4.1 - Body weight change (g) - During treatment - Group mean data	58
TAB]	LE 4.2 - Body weight change (g) - During recovery - Group mean data	60
TAB:	LE 5.1 - Haematology - At the end of treatment - Group mean data	62
TAB	LE 5.2 - Haematology - At the end of recovery - Group mean data	68
TAB	LE 6.1 - Clinical chemistry - At the end of treatment - Group mean data	/4
TAB	LE 6.2 - Clinical chemistry - At the end of recovery - Group mean data	8U
TAB	LE 7.1 - Urinalysis - At the end of treatment - Group mean data	00
TAB	LE 7.2 - Urinalysis - At the end of recovery - Group mean data	00 00
TAB	LE 8.1 - Terminal body weight (g) - Final sacrifice - Group mean data	ソリ
TAB	LE 8.2 - Terminal body weight (g) - Recovery sacrifice - Group mean data	92 04
TAB	LE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data	94 04
TAB	LE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data	14
TAB	LE 10.1 - Relative organ weights - Final sacrifice - Group mean data	14 71
TAB	LE 10.2 - Relative organ weights - Recovery sacrifice - Group mean data	24 24
TAB	LE 11.1 - Macroscopic observations - Unscheduled deaths - Group incidence	J4 25
TAB	LE 11.2 - Macroscopic observations - Final sacrifice - Group incidence	33 27
TAB	LE 11.3 - Macroscopic observations - Recovery sacrifice - Group incidence	30 30
TAB	LE 12.1 - Microscopic observations - Main phase - Group incidence	<i>J7</i> 41
TAB	LE 12.2 - Microscopic observations - Recovery phase - Group includince	41

Contents – Volume II

Page

Appendices

APPENDIX 1 - Mortality - Individual data	3
APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treatment	nt
- Individual data	4
APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of recovery	у
- Individual data	8
APPENDIX 3.1 - Motor activity - At the end of treatment - Individual data	12
APPENDIX 3.2 - Motor activity - At the end of recovery - Individual data	14
APPENDIX 4.1 - Body weight (g) - During treatment - Individual data	16
APPENDIX 4.2 - Body weight (g) - During recovery - Individual data	20
APPENDIX 5.1 - Body weight change (g) - During treatment - Individual data	22
APPENDIX 5.2 - Body weight change (g) - During recovery - Individual data	26
APPENDIX 6.1 - Food consumption (g/animal/day) - During treatment - Cage data	28
APPENDIX 6.2 - Food consumption (g/animal/day) - During recovery - Cage data	30
APPENDIX 7.1 - Haematology - At the end of treatment - Individual data	32
APPENDIX 7.2 - Haematology - At the end of recovery - Individual data	38
APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data	44
APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data	50
APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data	56
APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data	64
APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data	72
APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data	76
APPENDIX 11.1 - Relative organ weights - Final sacrifice - Individual data	80
APPENDIX 11.2 - Relative organ weights - Recovery sacrifice - Individual data	84
APPENDIX 12 - Macroscopic and microscopic observations - Individual data	88
1	
Addenda	
ADDENDUM I - Computer abbreviations and symbols	150
ADDENDIM II - Abbreviations of neurotoxicity tests	152
ADDENDUM III - Analytical method and validation report for formulation analysis and formula	ation
analysis results	154
ADDENDUM IV -Analytical method and validation report for toxicokinetic analysis and	
toxicokinetic analysis results	169
ADDENDUM V - Certificate of analysis	213
ADDENDIM VI - Study protocol	215
ADDENDUM VII - Clinical pathology report	232
ADDENDUM VIII - Historical control data	234

1. SUMMARY

1.1 The oral toxicity of when given by daily administration to rats, has been investigated over a period of 4 consecutive weeks and recovery from any potential treatment-related effects over a period of 2 consecutive weeks.

Three groups, each of 5 male and 5 female Sprague Dawley rats, received the test item by gavage at dosages of 0.3, 0.8 and 2.0 mg/kg/day for 4 consecutive weeks. A fourth similarly constituted group received the vehicle alone (distilled water) and acted as a control. Five additional animals for each sex were included in the high and control groups for recovery assessment. Blood samples were also taken following a single dose from a satellite group of 9 males and 9 females, dosed at 2.0 mg/kg/day, for toxicokinetic evaluations.

1.2 Mortality

One female animal dosed at 0.3 mg/kg/day was found dead on Day 23 of treatment. This death was not considered treatment-related.

1.3 Pre- and post-dose observations and weekly clinical signs

No signs were observed at daily post-dose observations. Detailed clinical signs with neurotoxicity assessment did generally not show any signs which could be correlated to the treatment with the test item.

1.4 Motor activity and sensory reaction to stimuli

A dose-related reduction of grip strength was observed in the treated males and in the midand high dose females at the end of treatment when compared to controls. No significant differences were observed at evaluations performed at the end of recovery.

Motor activity measurements performed at the end of treatment and recovery periods did not show changes which could be ascribed to treatment.

1.5 Body weight

Body weights showed statistically significant reductions in the high dose animals from Day 22 up to the end of the treatment period when compared to controls. Terminal body weight was also significantly reduced in the high dose animals. These reductions were still evident up to the end of the recovery period.

1.6 Food consumption

A reduction of food intake was observed at the end of the treatment phase in the high dose males. Food intake was still significantly reduced at the end of the first week of recovery and, in the males, also at the end of the recovery period.

1.7 Haematology

A decrease in white blood cells (lymphocytes in both sexes, neutrophils in the males) was observed in the high dose animals and in the mid-dose females. In addition, the prothrombin time was slightly increased in the high dose males. These changes showed a trend for recovery after the treatment-free period.

No other alterations in the haematological parameters were observed.

1.8 Clinical chemistry

Dose related changes observed at the clinical chemistry investigations performed during week 4 of treatment revealed alteration of liver function in the high dose males and, to a lesser extent, in two mid-dose males (increases in hepatic markers alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and total bilirubin, decrements in protein, globulin and albumin). A reversibility of these changes was observed for the aminotransferase enzymes. No significant hepatic marker alterations were observed in females.

Urea plasma levels were increased in high dose animals, while creatinine and inorganic phosphorus showed a decrement in the same group.

At the end of the recovery period, no complete reversibility of such changes was observed. No other changes of biological significance were observed.

1.9 Urinalysis

No alterations in urine were observed which could be attributed to treatment.

1.10 Toxicokinetic analysis

Detectable plasma levels of the test item were measured between 2 and 216 hours after dosing in the animals dosed at 2.0 mg/kg. Maximum plasma levels (C_{max}), calculated separately for each of the within the range of 124.3 – 4545.4 ng/ml in the males and 160.7 – 4581.3 ng/ml in the females. In both cases, showed the highest concentration.

 C_{max} was generally measured 24 hours after dosing (t_{max}). Athough in some fractions measured in the females different t_{max} were obtained. The estimated half-life ($t^{1/2}$) was comprised in the range of 201 - 544 hours for males and 39 - 2185 hours for females. The AUC was calculated to be from 22516 to 791984 ng/ml·h in the males and 26563 to 584697 ng/ml·h in the females.

 $\overline{AUC_{(inf)}}$ was calculated to be in the ranges of 57915 - 3249932 and 44431 - 877949 ng/ml·h in males and females, respectively.

1.11 Organ weights

Dose-related, statistically significant increases in absolute and relative liver weights were noted in all treated males and in mid- and high dose females at the end of the treatment period. This increase was still present at the end of recovery. In addition, statistically significant reductions of the absolute and relative weights of the spleen and thymus and increases of the relative weights of the thyroid, kidneys, epididymides and testes were seen in the high dose animals at the end of treatment. All these organs (spleen, kidneys, epididymides, testes, thyroid and thymus) still showed differences from controls at the end of recovery.

1.12 Macroscopic observations

The most relevant changes, observed at necropsy of the early decedent animal, were dark red contents in the abdominal cavity and 2 dark, ruptured areas in the liver.

Pale colour of the liver, sometimes accompanied by swollen shape of the organ, was reported in mid- and high dose males and 1 high dose female. Decreased size of the thymus and transparent seminal vesicles were also seen in high dose males.

Enlargement of the liver and renal pelvis dilatation was recorded in 2/5 treated males at the end of the recovery phase.

1.13 Microscopic observations

Multifocal, mild haemorrhages were reported in the liver of the early decedent animal. This finding, along with the macroscopic observation in the abdominal cavity, suggests that this death could be considered spontaneous or accidental in origin.

Liver: hepatocytic hypertrophy was observed in all high dose group animals, all mid-dose males and 4/5 low dose males. This finding showed mainly a panlobular distribution in the high dose group males, while it was limited to the centrilobular, mid-zonal areas in the remaining main phase animals.

Lungs: aggregation of alveolar macrophages was seen in the lungs of 4/5 males and 2/5 females from the high dose group.

Thymus: slight to moderate atrophy was observed in 3/5 males and in 1 female from the high dose group.

Only a partial remission of the changes considered related to the administration of the test item was observed following the 2-week recovery period.

Liver: hepatocytic hypertrophy was still evident in all treated animals.

Lungs: instances of focal aggregation of alveolar macrophages were seen in the lungs of 1 treated male and 1 treated female.

Thymus: moderate atrophy was observed in 1 treated male.

Colloid depletion was observed in the seminal vesicles of 3/5 high dose group males. Hepatocytic necrosis was observed in 2/5 high dose and 1/5 intermediate dose males in the main phase and in 1 treated male from the recovery group. The above changes, as well as the moderate chronic inflammation reported in the liver of 1 high dose male killed at termination of the treatment phase, were considered to be unspecific, possibly linked to the general condition of the treated animals and spontaneous in origin.

The remaining findings reported in the animals sacrificed after completion of the scheduled test periods and in the unscheduled dead animal were considered to be incidental or spontaneous in origin.

1.14 Conclusions

On the basis of the above results, signs of an evident toxic effect of the test item were seen at the 2 higher dose levels (0.8 and 2.0 mg/kg/day). Most of the observed effects were not reversible over a 2 week recovery period in the high dose animals. The findings in the liver, observed at all the doses were a clear indication of a toxic effect of the test item to this organ. Males were clearly more sensitive than females. Also the toxicokinetic half-life values were higher in males than females.

Effects on the main target organ, the liver, although at a lower incidence when compared to those observed at the higher dose levels, were also observed in the males of the low dose level (0.3 mg/kg/day). Besides changes in the liver, only minor effects were observed at 0.3 mg/kg/day in the males. The majority of these effects were not considered adverse, as they were slight, often not dose-related and within the normal range of historical control data. The hepatocytic hypertrophy could be suggestive of an adaptive change. However, the lack of recovery over a 2 week treatment-free period, seen in the high-dose animals, may be an indication of other changes occurring in the liver, not detectable through the standard microscopic examination. Therefore, none of the dose levels investigated may be considered either a No Observed Effect Level (NOEL) or a No Observed Adverse Effect Level (NOAEL) in this study for males. On the contrary, females appeared to be less sensitive than males. At 0.3 mg/kg/day no adverse effects were observed. Therefore this dose can be considered a No Observed Adverse Effect Level (NOAEL) for the females.

2. INTRODUCTION

The purpose of this study was to evaluate the toxicity of when administered daily to rats by the oral route for 4 consecutive weeks, and to investigate possible recovery from any treatment-related effects, during a 2 week recovery period.

The study design was in agreement with the procedures described in OECD Guideline No. 407 adopted on 27 July 1995 and with those described by Japanese METI (Ministry of Economy, Trade and Industry), of 13 July 1974 and subsequent revisions.

The Sprague Dawley rat was chosen because it is accepted by many regulatory authorities and there is ample experience and background data on this species and strain.

The oral route was selected as it is a possible route of exposure of the test item in man. The dose levels of 0.3, 0.8 and 2.0 mg/kg/day were defined in agreement with the Sponsor based on information from preliminary studies.

Each main group comprised 5 male and 5 female rats. Control and high dose groups included 5 additional animals per sex that were killed after 2 weeks of recovery. One satellite group for toxicokinetics comprised 9 male and 9 female animals. No treatment was given during the recovery period.

The animals were assigned to treatment groups on 24 March 2005 and dosing began on 31 March 2005. Necropsies of main groups were completed by 29 April 2005 and recovery groups by 12 May 2005.

The protocol is presented in Addendum VI.

The study was carried out at:

The study was conducted on behalf of:

3. TEST ITEM

Information received from the Sponsor indicated the following:

Name :

Alternative name
Batch Number of the

precursor acid : 32230N Batch Number : 90409/86-I CAS Number :

Purity :

Expiry date : 1st January 2015 Received from :

Date received : 14th January 2005

Amount received : Approximately 300 grams

Description
Container Colourless glass be

Container : Colourless glass bottle Storage at : Ambient conditions

reference number: 9372

The determination of the identity, strength, purity, composition and stability of the test item was the responsibility of the Sponsor.

A sample of the test item was taken before commencement of treatment and will be stored in the archives at a state of the test item was taken before commencement of treatment and will be stored in the archives at a state of the test item was taken before commencement of treatment and will be stored in the archives at a state of the test item was taken before commencement of treatment and will be stored in the archives at a state of the test item was taken before commencement of treatment and will be stored in the archives at a state of the test item was taken before commencement of treatment and will be stored in the archives at a state of the test item was taken before commencement of treatment and will be stored in the archives at a state of the test item was taken before commencement of treatment and will be stored in the archives at a state of the test item was taken before the test item.

The test item was dissolved in distilled water to give the required concentrations of 0.03, 0.08 and 0.2 mg/ml.

Prior to commencement of treatment the proposed formulation procedure was checked by chemical analysis to confirm that the method was acceptable. Stability was found to be equivalent to 6 days at room temperature following analysis. Samples of the formulations prepared in weeks 1 and 4 were analysed to check the concentration. Results of all the analyses were within the limits of acceptance (95-105%). Results of these analyses, carried out by the Analytical Chemistry Department at a presented in Addendum III of this report.

4. METHODS

4.1 Test system

4.1.1 Animal supply and acclimatisation

After arrival, on 11 March 2005, the weight range for each sex was determined and the animals were temporarily identified within the cage by means of a coloured mark on the tail. A health check was then performed by a veterinarian.

An acclimatisation period of approximately 2 weeks was allowed before the start of treatment, during which time the health status of the rats was assessed by thorough observations.

4.1.2 Animal husbandry

The animals were housed in a limited access rodent facility. Animal room controls were set to maintain temperature and relative humidity at $22^{\circ}\text{C} \pm 2^{\circ}\text{C}$ and $55\% \pm 15\%$ respectively; actual conditions were monitored, recorded and the records retained. There were approximately 15 to 20 air changes per hour and the rooms were lit by artificial light for 12 hours each day.

The animals were housed up to 5 of one sex to a cage, in clear polycarbonate cages measuring 59x38.5x20 cm with a stainless steel mesh lid and floor (Example 20 of the cage tray held absorbent paper which was inspected and changed at least 3 times a week.

Drinking water was supplied *ad libitum* to each cage via water bottles, except as noted in section 4.4.

A commercially available laboratory rodent diet () was offered ad libitum throughout the study, except as noted in section 4.4.

There was no information available to indicate that any non-nutrient substance likely to influence the effect of the test item was present in the drinking water or the diet. Records of analyses of water and diet are kept on file at the substance likely to influence the effect of the test item was present in the drinking water or the diet. Records of analyses of water and diet are kept on file at the substance likely to influence the effect of the test item was present in the drinking water or the diet. Records of analyses of water and diet are kept on file at the substance likely to influence the effect of the test item was present in the drinking water or the diet.

Dated and signed records of activities relating to the day to day running and maintenance of the study in the animal house were recorded in a Study Day Book.

4.1.3 Allocation to groups

On the day of allocation (7 days prior to the start of treatment) all animals were weighed. Animals at the extremes of the weight distribution and/or any animal showing signs of ill health were excluded to leave the required number of animals. The rats were allocated to the 5 groups by computerised stratified randomisation to give approximately equal initial group mean body weights.

Individuals were uniquely identified within the study by sex, tattoo on the hind feet, and ear notch and housed up to 5 of one sex per cage.

The cages were identified by a label and recording the study number, animal numbers and details of treatment.

The arrangement of cages in batteries was such that cages from each main group were evenly distributed across the battery (Figure 1) to minimise possible environmental effects.

4.2 Treatment

4.2.1 Selection of dose levels

Dose levels were selected in consultation with the Sponsor based on information from preliminary studies.

4.2.2 Dose levels, group size and identification

Each main group comprised 5 male and 5 female rats. Control and high dose groups included 5 additional animals per sex to be sacrificed after 2 weeks of recovery. One satellite group for toxicokinetics comprised 9 male and 9 female animals. The group identification and animal numbers assigned to the treatment are summarised below:

MAIN GROUPS

Group	Treatment	Level	Main phase		1	umbers ery phase	
Number:	(mg/kg/day)+		M	F	M	F	
			(even)	(odd)	(even)	(odd)	
1	0.0	Control	2 - 10	1 - 9	12 - 20	11 - 19	
2	0.3	Low	22 - 30	21 - 29			
3	0.8	Medium	32 - 40	31 - 39			
4	2.0	High	42 - 50	41 - 49	52 - 60	51 - 59	
+: in term	+: in terms of test item as supplied						

SATELLITE GROUP

Group	Treatment		Rat n	umbers		
Number:	(mg/kg)+	Level	Males	Females		
			(even)	(odd)		
5	2.0	High	62 - 78	61 - 77		
+: in terms of test item as supplied						

The rat numbers listed above formed the last digits of a computer generated 8 figure animal number (the remaining digits of the animal number were different for each concurrent study and served to ensure unique animal numbering for any study employing computerised data collection). The computerised system used in this study was the Xybion Path/Tox System, version 4.2.2.

4.2.3 Administration of test item

The test item was administered orally, by gavage, at a dose volume of 10 ml/kg body weight. Control animals received the vehicle alone at the same dose volume.

The dose was administered to each animal on the basis of the most recently recorded body weight and the volume administered was recorded for each animal.

4.2.4 Duration of treatment

All main group animals were dosed once a day, 7 days a week, for a minimum of 4 consecutive weeks followed by a recovery period of 2 weeks for 5 males and 5 females from groups 1 and 4. Satellite group animals were dosed once only.

All animals from the main groups were dosed up until the day before necropsy.

No treatment was given during the recovery period.

In vivo observations 4.3

4.3.1 Mortality

Throughout the study, all animals were checked each working day, early in the morning and in the afternoon. At weekends and Public Holidays a similar procedure was followed except that the final check was carried out at approximately mid-day. This allowed post mortem examinations to be carried out during the working period of that day.

A complete necropsy was performed as detailed in section 4.6.2 below.

Pre- and post-dose observations (Main groups) 4.3.2

All observations were recorded for individual animals. Examination of individual animals for signs of reaction to treatment was carried out daily before dosing, immediately after, and approximately 1 and 2 hours after dosing up to Day 10 of the study. Since no animals showed any post-dose effects, examinations were reduced to pre-dose, immediately after and approximately 1 hour after dosing until the end of treatment. These data, as no signs were observed, are not presented in a tabulated form in this report.

Clinical signs and neurotoxicity assessment (Main groups) 4.3.3

All clinical signs were recorded for individual animals. Once before commencement of treatment and once a week thereafter each animal was subjected to a detailed clinical examination, which included an evaluation of neurotoxicity. Animals were examined in an open arena for a period of three minutes. Observed parameters, described by an evaluation scale, are indicated below:

Easy, Difficult, Very difficult Removal (from cage):

Normal, Slow, Moderate, Marked Handling reactivity:

Absent, Slight, Marked Lachrymation: Absent, Slight, Moderate, Marked

Palpebral closure: Absent, Slight, Marked Salivation:

Absent, Present Piloerection: Absent, Intervals of number of times (i.e. 1-3, 4-7, 8-10) Rearing:

Absent, Tonic spasms, Clonic spasms, Tonic-clonic spasms Spasms:

Absent, Present Myoclonia: Absent, Slight, Moderate, Marked

Mobility impairment: Very slow, Slow, Normal, Moderate, Marked

Arousal (animal activity): Absent, Present

Vocalisation: Absent, Present Stereotypies: Absent, Present Unusual respiratory pattern: Absent, Present Bizarre behaviour:

Absent, Intervals of number of times (i.e. 1-3, 4-6) Urination: Absent, Intervals of number of times (i.e. 1-3, 4-6) Defecation:

Absent, Present Tremors:

Gait (one of the following options):

Normal

Ataxia (Slight, Moderate, Marked) Hunched (Slight, Moderate, Severely)

Pronation

Fore limbs drag (Slight, Moderate, Marked) Hind limbs drag (Slight, Moderate, Marked)

All observed parameters, with the exception of the pre-dose, are reported in a group incidence table. Individual data are not included in this report.

Once during week 4 of treatment and once during week 2 of recovery, an evaluation of sensory reactivity to stimuli of different modalities (e.g. auditory, visual and proprioceptive stimuli) and assessment of grip strength were also performed.

4.3.4 Motor activity assessment (MA) (Main groups)

The motor activity of all animals was measured once during week 4 of treatment and week 2 of recovery by an automated activity recording device. Measurements were performed using a computer generated random order.

4.3.5 Body weight

All animals were weighed on the day of allocation to treatment groups, on the day that treatment commenced, weekly thereafter and just prior to necropsy. Satellite group animals were weighed on allocation and on the day of dosing only (data are not included in the report).

4.3.6 Food consumption (Main groups)

The weight of food consumed by each cage of rats was recorded weekly following allocation and the group mean daily intake per rat calculated.

4.4 Clinical pathology investigations (Main groups)

At the end of the 4 week treatment period and again at the end of week 2 of the recovery period, individual overnight urine samples were collected from all surviving animals of the main phase groups under conditions of food and water deprivation. Before starting urine collection, water bottles were removed from each cage and each animal received approximately 10 ml/kg of drinking water by gavage, in order to obtain urine samples suitable for analysis.

On the same days, samples of blood were withdrawn, prior to necropsy, under isofluorane anaesthesia from the abdominal vena cava from the same animals in the same conditions. Blood samples were collected and analysed in the same order, a computer-generated random cage order being used.

The blood samples collected were divided into tubes as follows:

EDTA anticoagulant

for haematological investigations

Heparin anticoagulant Citrate anticoagulant for biochemical tests for coagulation tests

The measurements performed on blood and urine samples are listed below:

4.4.1 Haematology

Haematocrit

Haemoglobin

Red blood cell count

Reticulocyte count (not performed as no signs of anaemia were evident)

Mean red blood cell volume

Mean corpuscular haemoglobin

Mean corpuscular haemoglobin concentration

White blood cell count

Differential leucocyte count - Neutrophils

- Lymphocytes
- Eosinophils
- Basophils
- Monocytes
- Large unstained cells

Abnormalities of the blood film

Platelets

Prothrombin time

4.4.2 Clinical chemistry

Alkaline phosphatase

Alanine aminotransferase

Aspartate aminotransferase

Gamma -glutamyltransferase

Urea

Creatinine

Glucose

Triglycerides

Phosphorus

Total bilirubin

Total cholesterol

Total protein

Albumin

Globulin

A/G Ratio

Sodium

Potassium

Calcium

Chloride

4.4.3 Urinalysis

Appearance

Volume

Specific gravity

PΉ

Protein

Total reducing substances

Glucose

Ketones

Bilirubin

Urobilinogen Blood

The sediment, obtained from centrifugation at approximately 3000 rpm for 10 minutes, was examined microscopically for:

Epithelial cells
Poly morphonuclear leucocytes
Erythrocytes
Crystals
Spermatozoa and precursors
Other abnormal components

4.5 Toxicokinetics (Satellite group)

Blood samples were collected at 9 time points from the day of dosing, from all animals of the satellite group as indicated in the following scheme:

Group	Treatment	Animal	Number	Time points
Number:	(mg/kg)	(Males)	(Females)	(hours)
		62, 64, 66	61, 63, 65	0, 4, 24
5	2.0	68, 70, 72	67, 69, 71	2, 8, 168
		74, 76, 78	73, 75, 77	6, 48, 216

At each sampling time approximately 0.8 ml blood samples were collected from the tail vein of each animal as indicated above. Samples were transferred into tubes containing heparin anticoagulant, centrifuged and the plasma frozen at -20°C. Analysis of the samples was carried out by the Analytical Chemistry Department of

Satellite group animals were dosed once only and no necropsy was performed on animals dying during the study or sacrificed at the end of the study. Surviving satellite group animals were killed at the end of the last bleeding procedure. No necropsy examination was performed on these animals.

Analysis of the samples was carried out by the Analytical Chemistry Department of Satellite group animals were dosed once only. Satellite group animals were killed at the end of the last bleeding procedure and no necropsy was performed in these animals.

For each fraction of the test product, the following parameters were calculated according to standard non-compartmental analysis:

 C_{max} : maximum observed plasma concentration

 T_{max} : time to C_{max} t¹/₂ : half life

AUC and AUC inf : area under the concentration-time curve calculated by the linear

trapezoidal rule

Means, standard deviations and kinetic parameters were obtained using a suitable Microsoft Excel Worksheet. Values identified in the tables as BLQ were considered as zero in the calculation of mean and standard deviation for plasma levels.

4.6 Terminal studies

4.6.1 Euthanasia

Animals that had completed the scheduled test period were killed by exsanguination under isofluorane anaesthesia. All animals of the main groups, including that found dead, were subjected to necropsy, supervised by a pathologist, as detailed below. Satellite group animals were killed with carbon dioxide.

4.6.2 Necropsy (Main groups)

The clinical history of the animal was studied and a detailed *post mortem* examination was conducted (including examination of the external surface and orifices). Changes were noted, the requisite organs weighed and the required tissue samples preserved in fixative and processed for histopathological examination (see sections 4.6.3 to 4.6.5).

4.6.3 Organ weights (Main groups)

From all animals completing the scheduled test period, the organs indicated in section 4.6.6 were dissected free of fat and weighed.

The ratios of organ weight to body weight were calculated for each animal.

4.6.4 Tissues fixed and preserved (Main groups)

Samples of all the tissues listed in section 4.6.6 were fixed and preserved in 10% buffered formol saline (except eyes which were fixed in Davidson's fluid; and testes and epididymides which were fixed in Bouin's solution and all preserved in 70% ethyl alcohol).

4.6.5 Histopathological examination

Tissues listed in section 4.6.6 were fixed and preserved. After dehydration and embedding in paraffin wax, sections of the tissues were cut at 5 micrometre thickness and stained with haematoxylin and eosin. In the first instance, the examination was carried out as detailed below:

- Tissues specified in section 4.6.6 from all animals in the control and high dose groups of the main phase.
- b) Tissues specified in Annex 1 from all animals killed or dying during treatment period.
- c) Tissue abnormalities from all main groups (this was a deviation from the protocol which indicated examination of abnormalities from all animals).

On the basis of the results obtained, in agreement with the Sponsor, the examination was extended to the liver, lungs and thymus of low and mid-dose group animals and to the animals which underwent 2 weeks of recovery.

4.6.6 Annex 1 of study protocol

Organs / Tissues	Weight	Fixation	Microscopic
		Preservation	Examination
Abnormalities		✓.	✓.
Adrenal glands	✓	✓.	✓.
Bone marrow (from sternum)		✓	√
Brain	✓	✓	√
Caecum		✓.	✓.
Colon		✓	✓.
Duodenum		✓	✓
Epididymides	✓	✓	✓
Eyes		✓	*
Heart	✓	✓	✓
Ileum (including Peyer's patches)		✓	✓
Jejunum		✓	✓
Kidneys	✓	✓	✓
Liver	. 🗸	✓	✓
Lungs (including mainstem bronchi)		✓	✓
Lymph nodes - cervical		✓	\checkmark
Lymph nodes - mesenteric		✓	✓
Ovaries	✓	✓	✓
Oviducts ^a		✓	✓
Parathyroid glands ^b		✓	✓
Pituitary gland		✓	✓
Prostate gland		✓	✓
Rectum		✓	✓
Sciatic nerve		✓	✓
Seminal vesicles		✓	✓
Spinal column		✓	*
Spinal cord		✓	✓
	✓	✓	✓
Spleen Stomach		✓	✓
Testes	✓	✓	✓
	· /	✓	✓
Thymus (where present)		√	✓
Thyroid	•	· /	✓
Trachea		· /	✓
Urinary bladder Uterus - cervix		· /	/

^{*:} not examined as no signs of toxicity were observed

4.7 Statistical analysis

For continuous variables the significance of the differences amongst groups was assessed by analysis of variance. Differences between each treated group and the control group were assessed by Dunnett's test using a pooled error variance. The homogeneity of the data was verified by Bartlett's test before Dunnett's test. If data were found to be inhomogeneous a Modified t test (Cochran and Cox) was applied. The mean values, standard deviations and statistical analysis were calculated from the actual values in the computer without rounding off.

a: weighed and preserved with ovaries

b: weighed and preserved with thyroid gland

4.8 Deviations from protocol

Any deviations from protocol are indicated within the text of the report. No deviations occurred which were considered to have compromised the purpose or integrity of the study.

4.9 Archives

Full records were maintained of all aspects of study conduct, together with the results of all measurements and observations.

All specimens, raw data, records and documentation generated during the course of this study will be retained within the archive at the The data will be kept for a period of 3 years after which the Sponsor will be contacted for instructions regarding despatch or disposal of the material. Biological samples will be destroyed shortly after the issue of the Final Report.

5. RESULTS

5.1 Mortality (Appendix 1)

One female animal dosed at 0.3 mg/kg/day was found dead on Day 23 of treatment. No clinical signs were seen during the study in this animal. On the basis of the *post mortem* findings, (dark red contents seen in the abdominal cavity and 2 dark, ruptured areas in the liver observed at macroscopic examination along with the multifocal, mild haemorrhage in the liver, seen at microscopic examination). These findings indicate that this death was not treatment-related.

5.2 Pre- and post-dose observations and weekly clinical signs (Open field measurements) (Table 1)

No signs were observed at daily post-dose observations. These data were not tabulated. Detailed clinical signs with neurotoxicity assessment did generally not show any signs which could be correlated to the treatment with the test item.

5.3 Sensory reaction to stimuli and motor activity (Table 2; Appendices 2 and 3)

A dose-related reduction of grip strength was observed in the treated males at the end of treatment when compared to controls (reductions of 35%, 57% and 60%, groups 2, 3, 4 respectively). This parameter was also slightly reduced in the mid- and high dose females (27% and 26% respectively). No significant differences were observed at evaluations performed at the end of recovery.

Motor activity measurements performed at the end of treatment and recovery periods did not show changes which could be ascribed to treatment.

5.4 Body weight (Figure 2: Tables 3, 4 and 7; Appendices 4 and 5)

Body weights showed statistically significant reductions in the high dose animals from Day 22 (7% less than controls in the males) up to the end of the treatment period, when reductions of 21% (main group animals) and 16% (recovery animals) were noted in the males and 9% (main group animals) and 10% (recovery animals) in the females when compared to controls. The slight body weight losses observed in the treated animals may be ascribed to the overnight fast prior to bleeding procedures for clinical pathology analyses. This was not observed in the controls, which showed only a reduced body weight gain. Terminal body weight was also statistically significantly reduced in the high dose animals (20% in the males and 11% in the females). These decreased body weights, due to a reduction of body weight gain, were still evident at the end of the recovery period (25% in the males and 9% in the females). Decreases of body weight gain were correlated to the reduced food intake, observed in the high dose males.

5.5 Food consumption (Appendix 6)

A reduction (20% less than controls) of food intake was observed at the end of the treatment phase in the high dose males. Food intake was still significantly reduced (33%) at the end of the first week of recovery. Slight reductions (9%) were still present in the males at the end of the recovery period.

5.6 Haematology (Table 5; Appendix 7)

A decrease in white blood cell was observed in the high dose animals (approximately 19%) and in the mid-dose females (approximately 17%) at the end of the treatment period. This reduction was still evident at the end of the recovery period (11% and 16% in females and males respectively). The decrement comprised both the lymphocytes and the neutrophils in the males, which had 29%, 19% and 39% less neutrophils at the high, medium and low dose, respectively. Such an evident decrement was not observed in the females.

In addition, the prothrombin time was slightly increased in high dose males (14%). This could reflect the alteration in hepatic functions as indicated by the clinical chemistry results. This change showed a trend for recovery at the end of treatment-free period, when an increase of 8% was observed.

The other differences observed in the haematological parameters (RBC, HGB, HCT, MCHC) were considered to be incidental and of no toxicological significance, since they were observed only during the recovery phase and no other alterations in the same haematological parameters were observed during the treatment period.

5.7 Clinical chemistry (Table 6; Appendix 8)

The statistically significant changes in clinical chemistry parameters are summarized below:

Parameters	2M	3M	4M	4M Rec	2F	3F	4F	4F Rec
AP		+18%	+33%	+41%				
ALT		+309%	+219%					
AST		+58%	+61%					-29%
BILT			+70%			-60%	-33%	-37%
CHOL	-34%	-23%		+76%				
GLU							+20%	+31%
TRI		-51%		-45%				-27%
Urea			+48%	+35%			+24%	
Crea				-34%			-15%	-35%
Prot	-9%		-16%	-11%				
Alb			-13%					+9%
Glo	-14%	-11%	-23%	-26%				
A/G Ratio							+17%	+20%
Cl			+2%				+2%	-1%
Phos		-9%	-21%				-9%	-7%
Na		+4%		-2%				-2%
K								+12%

Changes observed at the clinical chemistry investigations performed during week 4 of treatment revealed an alteration of liver function in the high dose males and, to a lesser extent, in two mid-dose males (increases in hepatic markers alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and total bilirubin, decrements in protein, globulin and albumin). These changes were generally dose related (from approximately 20% to approximately 3 fold) and, in some high dose animals, values were outside the range of historical data.

The above mentioned changes could reflect an alteration in the hepatic function.

A reversibility of these changes was observed for the aminotransferase enzymes at the clinical pathology performed during week 2 of recovery.

No significant hepatic marker alterations were observed in females.

Urea plasma levels were increased in high dose animals, while creatinine and inorganic phosphorus showed a decrement in the same group. At the end of the recovery period, no complete reversibility of such changes was observed. The cause of these changes however remains unclear and could not be conclusively attributed to the test item.

In addition, changes of chloride and sodium serum levels were insufficient in magnitude to be of biological significance.

The other alterations observed during the recovery period in both sexes were considered to be incidental and of no toxicological significance.

5.8 Urinalysis (Table 7; Appendix 9)

No alterations in urine were observed which could be attributed to treatment.

5.9 Toxicokinetic analysis (Figure 3; Addendum IV)

Detectable plasma levels of the test item were measured between 2 and 216 hours after dosing in the animals dosed at 2.0 mg/kg. Maximum plasma levels (C_{max}), calculated separately for each of the were as follows: 370.2 and 472.5 ng/ml of 124.3 and 160.7 ng/ml of 4, 4545.4 and 4581.3 ng/ml of 4, 689.3 and 773.8 ng/ml of 196.9 and 234.7 ng/ml of 1 in the males and females, respectively). C_{max} was generally measured 24 hours after dosing (t_{max}). A t_{max} of 6 hours was observed in the males for 1 the estimated half-life (t½) calculated separately for each showed the following figures: 544 and 2185 hours for 1, 385 and 346 hours for 1, 481 and 39 hours for 1, 454 and 763 hours for 1, 201 and 160 hours for 1 in males and females, respectively. Very high test item plasma levels of all fractions were still present seven days after dosing, particularly in the males.

The AUC was calculated to be 65550 and 77653 ng/ml·h for 1, 22516 and 26563 ng/ml·h

The AUC was calculated to be 65550 and 77653 ng/ml·h for , 22516 and 26563 ng/ml·h for , 791984 and 167950 ng/ml·h for 123729 and 130769 ng/ml·h for , 30768 and 27116 ng/ml·h for in the males and females, respectively.

Calculations were generally made from $t_{max,}$ with some exceptions (the females), in which the 24 and 48 hour samples were included in the calculation.

AUC_(inf) was calculated to be 299662 and 877949 ng/ml·h for , 72388 and 63751 ng/ml·h for , 3249932 and 176042 ng/ml·h for , 464508 and 584697 ng/ml·h for , 57915 and 44431 ng/ml·h for in males and females, respectively.

Half-life values were obtained by an extrapolation, as no decrements of test item fraction plasma levels were observed at 216 hours post-dose. This situation did not allow the calculation of significant values of the AUC.

5.10 Organ weights (Tables 9 and 10; Appendices 10 and 11)

Dose-related, statistically significant increases in liver weights were noted in all treated males (54% and 84% in mid- and high dose groups for absolute weights, 17%, 57% and 130% greater than controls for relative weights) and in the mid- and high dose females (46% in high dose group for absolute weights, 16% and 65% in mid- and high dose groups for relative weights) at the end of the treatment period. These increases were still present at the end of the recovery period (in the males 89% and 152% and in the females 56% and 71% absolute and relative respectively).

Statistically significant reductions of the absolute (38% in the high dose males, 23% and 36% in the mid- and high dose females) and relative (23% in the high dose males, 20% and 28% in the mid- and high dose females) weights of the spleen were also observed at termination of the treatment period.

In addition the absolute and/or relative weights of the thymus were reduced in high dose males (absolute showing a reduction of 41% and relative of 27%) and the relative weights of the kidneys, epididymides and testes were slightly increased in the high dose males at the end of treatment. An increase of the relative weight of the thyroid (26% and 15% in males and females respectively), statistically significant only in the males, was observed in the high dose animals.

All these organs (spleen, kidneys, epididymides, testes, thyroid and thymus) still showed differences from controls at the end of recovery.

The significance of some of the observed organ weight variations (liver and thymus) was supported by macroscopic and microscopic findings.

5.11 Macroscopic observations (Table 11; Appendix 12)

Unscheduled death:

One group 2 female was found dead on day 23 of the study. The most relevant changes, observed at necropsy, were dark red contents in the abdominal cavity and 2 dark, ruptured areas in the liver.

Final sacrifice:

Pale colour of the liver, sometimes accompanied by swollen shape of the organ, was reported in 3/5 high dose and 1/5 mid-dose group males and in 1/5 high dose group females. Decreased size of the thymus was seen in 2/5 males from the high dose group. The seminal vesicles of 2/5 males from the same group appeared transparent.

Recovery sacrifice:

Enlargement of the liver and renal pelvis dilatation was recorded in 2/5 treated males.

5.12 Microscopic observations (Table 12; Appendix 12)

Unscheduled death:

The most important finding, observed in the found dead animal, was detected in the liver, where multifocal, mild haemorrhages were reported. This finding, along with the macroscopic observation in the abdominal cavity, suggests that this death could be considered spontaneous or accidental in origin.

Final sacrifice:

Changes, possibly related to the treatment, were noted in the liver, lungs and thymus of treated animals when compared to controls.

Liver: hepatocytic hypertrophy was observed in all high dose group animals, all mid-dose males and 4/5 low dose males. This finding showed mainly a panlobular distribution in the high dose group males, while it was limited to the centrilobular, mid-zonal areas in the remaining main phase animals.

Lungs: aggregation of alveolar macrophages was seen in the lungs of 4/5 males and 2/5 females from the high dose group. Such a finding could be possibly suggestive of a phospholipidosis.

No changes were observed in the spleen and kidneys.

Thymus: slight to moderate atrophy was observed in 3/5 males and in 1 female from the high dose group.

Recovery sacrifice:

Only a partial remission of the changes considered related to the administration of the test item was observed following the 2-week recovery period.

Liver: hepatocytic hypertrophy was still evident in all treated animals.

Lungs: instances of focal aggregation of alveolar macrophages were seen in the lungs of 1 treated male and 1 treated female.

Thymus: moderate atrophy was observed in 1 treated male.

Other findings:

Colloid depletion was observed in the seminal vesicles of 3/5 high dose group males. Hepatocytic necrosis was observed in 2/5 high dose and 1/5 intermediate dose males in the main phase and in 1 treated male from the recovery group. Due to the lack of a zonal distribution and being present in a few treated animals, this finding was considered spontaneous in origin. The above changes, as well as the moderate chronic inflammation reported in the liver of 1 high dose male killed at termination of the treatment phase, were considered to be unspecific, possibly linked to the general condition of the treated animals and spontaneous in origin.

The remaining findings reported in the animals sacrificed after completion of the scheduled test periods and in the unscheduled dead animal were considered to be incidental or spontaneous in origin.

6. CONCLUSION

The oral toxicity of when given by daily administration to rats at dosages of 0.3, 0.8 and 2.0 mg/kg/day has been investigated over a period of 4 weeks and possible recovery from any treatment-related changes over a 2 week recovery period.

Animals dosed at 2 mg/kg/day showed no significant reactions during the in-life phase of the study. A slight but dose-related reduction of the grip strength was observed at neurological tests performed at the end of treatment, mainly for males. Slight reductions in body weight and food intake were noted in the males from this group at the end of treatment and recovery periods. A reduction in the WBC count (neutrophils and/or lymphocytes) was observed at the end of treatment and recovery periods. In addition, the prothrombin time was slightly increased in the males. Clinical chemistry investigations showed a dose-related alteration of the liver function in the males at the end of treatment (increases in alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and total bilirubin, decrement of total protein, globulin and albumin). Alkaline phosphatase was still increased at the end of recovery period. Alanine aminotransferase and aspartate aminotransferase were completely recovered at the end of the treatment-free period. These increases were usually dose-related and, occasionally, outside the range of historical data. No significant hepatic marker alterations were observed in females. Other clinical chemistry parameters (urea, chloride, inorganic phosphorus and sodium) showed changes at the end of treatment, mainly in the males. At the end of the recovery period, no complete reversibility of such changes was observed. The cause of these changes however remains unclear and could not be conclusively attributed to the test item.

Absolute and relative liver weights were increased at this dose level in the males. Increments in the relative kidneys, testes and thyroid weights were observed at the end of the treatment period. Thymus and spleen relative and absolute weights were also statistically significantly reduced in the males at the end of treatment. These changes were not reversible at the end of recovery. Females of this dose group showed increments in absolute and relative liver weights and decrement of the spleen weight (both absolute and relative), without recovery.

The toxicological significance of the changes observed in the liver was definitely supported by the findings reported at *post mortem* examination. Pale colour of the liver, sometimes accompanied by swollen shape of the organ, was reported in the majority of the males and in individual females. Decreased size of the thymus was also seen in the high dose animals (mainly in the males).

Treatment-related changes were noted at microscopic examination in the liver, lungs and thymus. The liver was the most affected organ. Hepatocytic hypertrophy suggestive of an adaptive change was observed in animals from this dose group. The observed findings were of lower severity and incidence in the females.

Thymus atrophy was also observed in the high dose animals. This lesion showed a higher severity degree in the males, when compared to female animals and along with the colloid depletion in the animal vesicles noted in some high dose males it could be considered secondary to the poor general condition of the animals.

Aggregation of alveolar macrophages was seen in the lungs of males and females. Such a finding could be possibly suggestive of a phospholipidosis condition. No histopathological effects were observed in the spleen and kidneys.

In animals dosed at 0.8 mg/kg/day, the toxicological systemic effects were less relevant than for animals of the high dose group. A reduction of the grip strength was observed both in males and in females. No significant reductions in body weight and food consumption were observed for either sexes.

Slight effects in the haematological parameters, such as a decrease in the white blood cell count, were seen in female animals. Clinical chemistry variations, mainly comprising increment of alkaline phosphatase, alanine aminostranferase and aspartate aminotransferase were noted only in males. No significant hepatic marker alterations were observed in the females.

Absolute and relative liver weights were increased in the males, along with decrease in spleen and thymus weights. Females showed increment in liver and decrement in spleen weights both for the absolute and relative values.

The microscopic examination revealed liver hepatocytic hypertrophy in all the males but not in the females. No histopathological effects were observed in the spleen.

At 0.3 mg/kg/day, "in-life" observations showed a reduction in grip strength in the males. No effects in body weight and food consumption, haematological and clinical chemistry parameters were seen in these animals. Absolute and relative liver weight increment, along with decrement in spleen weight was still evident. Microscopic pathology revealed hepatocytic hypertrophy in the majority of male animals.

The only effect observed in the females was a slight decrease in spleen relative and absolute weights. No histopathological effects were observed in this organ.

On the basis of these results, signs of an evident toxic effect of the test item were seen at the 2 higher dose levels (0.8 and 2.0 mg/kg/day). Most of the observed effects were not reversible over a 2 week recovery period in the high dose animals. The findings in the liver, observed at all the doses were a clear indication of a toxic effect of the test item to this organ. Males were clearly more sensitive than females. Also the toxicokinetic half-life values were higher in males than females. Detectable plasma levels of the

were measured between 2 and 216 hours after dosing the animals at 2 mg/kg. C_{max} was usually measured after 24 hours post-dose (T_{max}), even though for some fractions different T_{max} were calculated, usually in the females. Due to the high plasma levels recorded at 216 hours post-dose, a correct calculation of the half-life (T ½) was not possible, only estimations were performed, comprised in the range of 201-544 hours for males and 39-763 hours for females. This situation did not allow the calculation of a significant value of the AUC.

Effects on the main target organ, the liver, although at a lower incidence when compared to those observed at the higher dose levels, were also observed in the males of the low dose level (0.3 mg/kg/day). Besides changes in the liver, only minor effects were observed at 0.3 mg/kg/day in the males. The majority of these effects were not considered adverse, as they slight, often not dose-related and within the normal range of historical control data. The hepatocytic hypertrophy could be suggestive of an adaptive change. However, the lack of recovery over a 2 week treatment-free period, seen in the high-dose animals, may be an indication of other changes occurring in the liver, not detectable through the standard microscopic examination. Therefore, none of the dose levels investigated may be considered either a No Observed Effect Level (NOEL) or a No Observed Adverse Effect Level (NOAEL) in this study for males. On the contrary, females appeared to be less sensitive than males. At 0.3 mg/kg/day no adverse effects were observed. Therefore this dose can be considered a No Observed Adverse Effect Level (NOAEL) for the females.

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

FIGURE 1 - Group and cage arrangement on battery

STUDY NO.:

MAIN PHASE

Group	Treatment	Level	Rat numbers		Cage numbers		
Number:	(mg/kg/day)+		M	F	M	F	
			(even)	(odd)			
1	0.0	Control	2 - 10	1 - 9	1	7	
2	0.3	Low	22 - 30	21 - 29	3	9	
3	0.8	Medium	32 - 40	31 - 39	4	10	
4	2.0	High	42 - 50	41 - 49	5	11	

RECOVERY PHASE

Group	Treatment	Level	Rat numbers Cage 1		Cage nu	ımbers
Number:	(mg/kg/day)+		M (even)	F (odd)	М	F
1	0.0	Control	12 - 20	11 - 19	2	8
4	2.0	High	52 - 60	51 - 59	6	12

^{+:} in terms of test item as supplied

MAIN PHASE

Group/Sex Cage no.

Males	Females
1M 4M ^R	$\overline{1F}$ $4F^{R}$
1 6	7 12
2M	2F
3	9
3M	3F
4	10
4M	4F
5	11
1M ^R	$1F^{R}$
2	8

o: No treatment will be given during the recovery period.

 $^{^{}R} = Recovery$

WEEK RECOVERY PERIOD

FIGURE 1 - Group and cage arrangement on battery (continued)

STUDY NO.

SATELLITE GROUP

Group	Treatment	Level	Rat numbers		Cage numbers	
Number:	(mg/kg/day)+		M (even)	F (odd)	M	F
5	2.0	High	62 - 78	61 - 77	13-15	16-18

Group/Sex Cage no.

_				
Λ	Л2	ılı	20	

5M 13 14

5M 5M 15

Females

5F		
	16	
5F		
	17	
5F		
	18	

Group/Sex

Cage no.

Males		Females
1M ^R		
	2	
4M ^R		
	6	

1F^R 12

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

FIGURE 2.1 - Body weight versus day of study - Males

STUDY NO.:

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

FIGURE 2.2 - Body weight versus day of study - Females

STUDY NO.:

FIGURE 3 - Plasma levels

STUDY NO.:

T_{max} (h): 24 C_{max} (ng/ml): 370.2

T 1/2 (h): 544

AUC (24-216) (ng/ml·h): 65550 AUC (inf) (ng/ml·h): 299662

T_{max} (h): 168 C_{max} (ng/ml): 472.5 T 1/2 (h): 2185

AUC (24-216) (ng/ml·h): 77653 AUC (inf) (ng/ml·h): 877949

T_{max} (h): 24 C_{max} (ng/ml): 124.3 T ½ (h): 385

AUC (24-216) (ng/ml·h): 22516 AUC (inf) (ng/ml·h): 72388

T_{max} (h): 24 C_{max} (ng/ml): 160.7 T 1/2 (h): 346

AUC (24-216) (ng/ml·h): 26563 AUC (inf) (ng/ml·h): 63751

T_{max} (h): 24 C_{max} (ng/ml): 4545.4 T ½ (h): 481

AUC (24-216) (ng/ml·h): 791984 AUC (inf) (ng/ml·h): 3249932

T_{max} (h): 2 C_{max} (ng/ml): 4581.3 T ½ (h): 39

AUC (2-216) (ng/ml·h): 167950 AUC (inf) (ng/ml·h): 176042

T_{max} (h): 24 C_{max} (ng/ml): 689.3

T ½ (h): 454

AUC (24-216) (ng/ml·h): 123729 AUC (inf) (ng/ml·h): 464508

T_{max} (h): 168 C_{max} (ng/ml): 773.8

T 1/2 (h): 763

AUC (24-216) (ng/ml·h): 130770 AUC (inf) (ng/ml·h): 584697

T_{max} (h): 6 C_{max} (ng/ml): 196.9

T 1/2 (h): 201

AUC (6-216) (ng/ml·h): 30768 AUC (inf) (ng/ml·h): 57915

T_{max} (h): 24 C_{max} (ng/ml): 234.7

T ½ (h): 160

AUC (24-216) (ng/ml·h): 27116 AUC (inf) (ng/ml·h): 44431

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 1.1 - Clinical signs - During treatment - Group incidence

MALES

MALES								
Interval: 1 - 4 Weeks Group Observation		1 (10)	(5)	2		3 (5)	(10)	4. (C
APPEARANCE	i 	Ω		Ω	i i 1 rs 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	i ro	α
Staining Hairloss	нн	2.0	00	0.0	0 н	0.0	00	0.0
REMOVAL								
Removal easy	10	4.0	ß	4.0	S	4.0	10	4.0
HANDLING REACTIVITY								
Handling reactivity normal	10	4.0	z,	4.0	ហ	4.0	10	4.0
LACHRYMATION								
Lachrymation absent	10	4.0	ις	4.0	'n	4.0	10	4.0
PALPEBRAL CLOSURE				,				
Palpebral closure absent	10	4.0	sn	4.0	Ŋ	4.0	10	4.0
SALIVATION								
Salivation absent	10	4.0	2	4.0	ιŊ	4.0	10	4.0
PILOERECTION								
Piloerection absent	10	4.0	ın	4.0	ιń	4.0	10	4.0

Key: () = Number of animals alive at start of interval a = Number of animals affected b = Number of weeks with clinical sign/animal

4.0

10

4.0

ល

4.0

വ

4.0

10

Arousal normal

VOCALISATION

4.0

10

4.0

'n

4.0

'n

4.0

10

Vocalisation absent

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 1.1 - Clinical signs - During treatment - Group incidence

STUDY NO.:

MALES

			Í					
Interval: 1 - 4 weeks Group		₩		2		m		বা
Observation	(1	(10)	50	(5)	9	(5)	Ē	(10)
REARING	i 1 1 (1) 1		ď	q	l l l rd	ρ	no.	Ω
0 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5	-	C	c		c	·	c	c
Regimny absence	٦,). 	> 1-		> <) C	
Dourst All	4 0) -	T 0) C) C		۰ د	o. ←
	n <	4 C	י יי		יז כ		1 п	
Rearing 6-10	ተ ር	ກ.ເ ∹ -	יזרי	1.0	n 0) ·	ה ה	7 4
Described the second of the se	10) ,	? r) II	,,,	- u	, i.
Rearing 21-30	υ	, C) H	· 0 ·	> - -	2.0	'n	1 (-)
Rearing more than 30	. 4	1.0	0	0.0	1	1.0	н	1.0
SPASMS								
Spasms absent	10	4.0	ιŊ	4.0	S	4.0	10	4.0
MYOCLONIA								
Myoclonia absent	10	4.0	ιλ	4.0	ςς.	4.0	10	4.0
GAIT								
Normal gait	10	4.0	ß	4.0	Ŋ	4.0	10	4.0
MOBILITY IMPAIRMENT								
Mobility impairment absent	10	4.0	ĸΩ	4.0	5	4.0	10	4.0
AROUSAL								

Key: () = Number of animals alive at start of interval
 a = Number of animals affected
 b = Number of weeks with clinical sign/animal

TABLE 1.1 - Clinical signs - During treatment - Group incidence

MALES								
Interval: 1 - 4 Weeks Group Observation	(1	1 (10)		2 (5)	<u> </u>	3 (5)		4 (10)
STEREOTYPIES	rot I	q	re	q	rd	Ω	ď	۵
Stereotypies absent	10	4.0	Ŋ	4.0	ហ	4.0	10	4.0
UNUSUAL RESPIRATION								
Unusual respiration absent	10	4.0	ιŊ	4.0	Ŋ	4.0	10	4.0
BIZARRE BEHAVIOUR								
Bizarre behaviour absent	10	4.0	ស	4.0	S	4.0	10	4.0
URINATION								
Unimation absent	σο	9.	lų <	7.2	2.5	5.5	١ - ١	on r ⊢l (
Utination 1-5 Urination 4-6	πα	# C*	7' ←		5'	7.3	~ r	T - 7'
Urination 7-9	·⊢I	0.1	. .≓	. 0	ı m	1.0	ന	1.7
Urination more than 10	7	1.5	н	2.0	7	2.0	4	1.0
DEFECATION								
Defecation absent	10	თ. წ	'n	3.6	Ŋ	4.0	10	4.0
Defecation 1-3 Defecation 4-6	п О	1.0	0 न	0.0	00	0.0	00	0.0
TREMORS								
Tremors absent	10	0.4	ιΩ	4.0	S	4.0	10	4.0

Key: () = Number of animals alive at start of interval a = Number of animals affected b = Number of weeks with clinical sign/animal

TABLE 1.1 - Clinical signs - During treatment - Group incidence

Interval: 1 - 4 Weeks Group Observation	1 (1)	(10)		2 (5)	(5)		[4 (10)
REMOVAL			i rs		i es		l ro	Q
Removal easy	10	0.4.0	2	3.8	ς,	4.0	10	10 4.0
HANDLING REACTIVITY								
Handling reactivity normal	10	4.0	ιςs	3.8	Ŋ	4.0	10	.0 4.0
LACHRYMATION								
Lachrymation absent	10	4.0	S	8.	5	4.0	10	4.0
PALPEBRAL CLOSURE								
Palpebral closure absent	10	4.0	ιĵ	3.8	S	4.0	10	4.0
SALIVATION								
Salivation absent	10	4.0	ιŊ	3.8	ιΩ	4.0	10	4.0
PILOERECTION								
Piloerection absent	10	4.0	ъņ	3.8	rv	4.0	10	4.0
REARING								
Rearing 1-3	0	0.0	0	0.0	Ö	0.0	m	1.0
Rearing 4-7	⊣ :	1.0	0	0.0	0	0.0	0	0.0
Rearing 8-10	-1 т	1.0	0 (0.0	ο,	0.0	0	0.0
Rearing 11-14 Rearing 15-20	-1 - -1	2.0	⊃ ⊢	0.0		1.0	۰,	0.0
Rearing 21-30	ıω	2.7	ধ্য	2.5	1 4	. 60	4 ON	o. c.
Rearing more than 30	7	2.6	m	2.7	ഗ	1.2	Ŋ	1.6

Key: () = Number of animals alive at start of interval a = Number of animals affected b = Number of weeks with clinical sign/animal

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 1.1 - Clinical signs - During treatment - Group incidence

				3		111111111111111111111111111111111111111	1	
Interval: 1 - 4 Weeks Group	1 (10)	₽ ~	(5)	200	3	e (g	(10)	4
SPASMS	l l g	 	i d	1	ro	q	g	ą
Spasms absent		4.0	S	æ. æ.	ηŞ	5 4.0	10	0,4
MYOCLONIA								
Myoclonia absent	10	4.0	ស	დ. რ	ιŊ	4.0	10	10 4.0
GAIT								
Normal gait		4.0	Ŋ	3.8	w	4.0	10	0.7
MOBILITY IMPAIRMENT								
Mobility impairment absent		4.0	η)	. s	ιΩ	4.0	10	4.0
AROUSAL								
Arousal normal	10	4.0	τŪ	3.8	Ŋ	4.0	10	4.0
VOCALISATION								
Vocalisation absent	10	4.0	ເທ	3.8	S	4.0	10	4.0
STEREOTYPIES								
Stereotypies absent	10	4.0	S	3.8	пЭ	4.0	10	4.0
UNUSUAL RESPIRATION								
Unusual respiration absent	10	4.0	5	3.8	Ŋ	0.4	10	4.0
BIZARRE BEHAVIOUR								
Bizarre behaviour absent	10	4.0	ιO	3.8	۲O	4.0	10	4.0

Key: () = Number of animals alive at start of interval
 a = Number of animals affected
 b = Number of weeks with clinical sign/animal

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 1.1 - Clinical signs - During treatment - Group incidence

STUDY NO.:

Interval: 1 - 4 Weeks Group Observation	(10)	2 (5)	(5)	4 (10)
URINATION	Ą		 	p p
Urination absent	10 3.2		5 3.6	
Unination 1-3	4 t	W	2 1.0	5 1.0
Orthacion 4-6	0.2		0.0	
DEFECATION				
Defecation absent	10 4.0	S 3.8	5 4.0	10 4.0
TREMORS				
Tremors absent	10 4.0	3.8	5 4.0	10 4.0

Key: () = Number of animals alive at start of interval a = Number of animals affected b = Number of weeks with clinical sign/animal

TABLE 1.2 - Clinical signs - During recovery - Group incidence

MALES				
Interval: 1 - 2 Weeks Group Observation	<u>"</u>	1 (5)	(5)	4 (5)
APPEARANCE	1 1 1 (1) 1	Q		Q
Scab(s) Hairloss	00	0.0	ee eo	1.0
REMOVAL				
Removal easy	ιΩ	2.0	ιΩ	2.0
HANDLING REACTIVITY				
Handling reactivity normal	Ŋ	2.0	ഗ	2.0
LACHRYMATION				
Lachrymation absent	ഗ	2.0	Ŋ	2.0
PALPEBRAL CLOSURE				
Palpebral closure absent	Ω.	2.0	ហ	2.0
SALIVATION				
Salivation absent	ហ	2.0	5	2.0
PILOERECTION				
Piloerection absent	ιΩ	2.0	ιΩ	2.0

Key: () = Number of animals alive at start of interval a = Number of animals affected b = Number of weeks with clinical sign/animal

TABLE 1.2 - Clinical signs - During recovery - Group incidence

Interval: 1 - 2 Weeks Group Observation	1 (5)	4 (5)
REARING	ים	ρ
Rearing 1-3 Rearing 4-7 Rearing 8-10 Rearing 11-14	11.0	1 1.0 1 1.0 4 1.0 3 1.0
Rearing 21-30		
Spasms absent	5 2.0	5 2.0
Myoclonia absent	5 2.0	5 2.0
Normal gait MOBILITY IMPAIRMENT	5 2.0	5 2.0
Mobility impairment absent AROUSAL	2.0	5 2.0
Arousal normal	5 2.0	5 2.0
Vocalisation absent	5 2.0	5 2.0

Key: () = Number of animals alive at start of interval a = Number of animals affected b = Number of weeks with clinical sign/animal

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 1.2 - Clinical signs - During recovery - Group incidence

MALES

Interval: 1 - 2 Weeks Group Observation	1 (5)	4 (5)
STEREOTYPIES	ه 'ت	Q
Stereotypies absent	5 2.0	5 2.0
UNUSUAL RESPIRATION		
Unusual respiration absent	5 2.0	5 2.0
BIZARRE BEHAVIOUR		
Bizarre behaviour absent	5 2.0	5 2.0
URINATION		
Urination absent Urination 1-3 Urination 4-6 Urination 7-9 Urination more than 10	1 2 4 4 2 1 . 0 . 0	1 2.0 4 2.0 0 0.0 0 0.0
DEFECATION		
Defecation absent	5 2.0	5 2.0
TREMORS		
Tremors absent	5 2,0	5 2.0

Key: () = Number of animals alive at start of interval a = Number of animals affected b = Number of weeks with clinical sign/animal

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 1.2 - Clinical signs - During recovery - Group incidence

8
STUDY

			1	
: 1 - 2 Weeks	(5)	1	(5)	
REMOVAL	l l l l	,	! ! ! ! (3)	Q
Removal easy	Ŋ	2.0	ς,	2.0
HANDLING REACTIVITY				
Handling reactivity normal	Ŋ	2.0	ι,	2.0
LACHRYMATION				
Lachrymation absent	ស	2.0	ഹ	2.0
PALPEBRAL CLOSURE				
Palpebral closure absent	ъ	2.0	ιn	2.0
SALIVATION				
Salivation absent	5	2.0	w	2.0
PILOERECTION				
Piloerection absent		2.0	'n	2.0
REARING				
Rearing 11-14 Rearing 15-20 Rearing 21-30 Rearing more than 30	0044	0.0 0.0 1.3 1.3	H W 4 O	1.0 1.0 1.5 0.0
SPASMS				
Spasms absent	ເຄ	2.0	τ.	2.0

Ney: () = Number of animals alive at start of interval a = Number of animals affected b = Number of weeks with clinical sign/animal

TABLE 1.2 - Clinical signs - During recovery - Group incidence

	l	
,		
ç	•	
>		
٠)	

SETANES		
Interval: 1 - 2 Weeks Group Observation	(5)	4 (5)
MYOCLONIA	ά	Q
Myoclonia absent	5 2.0	5 2.0
GAIT		
Normal gait	5 2.0	5 2.0
MOBILITY IMPAIRMENT		
Mobility impairment absent	5 2.0	5 2.0
AROUSAL		
Arousal normal	5 2.0	5 2.0
VOCALISATION		
Vocalisation absent	5 2.0	5 2.0
STERECTYPIES		
Stereotypies absent	5 2.0	
UNUSUAL RESPIRATION		
Unusual respiration absent	5 2.0	5 2.0
BIZARRE BEHAVIOUR		
Bizarre behaviour absent	5 2.0	5 2.0
URINATION		
Urination absent Urination 1-3	3 1.0	2 1.6

Key: () = Number of animals alive at start of interval
 a = Number of animals affected
 b = Number of weeks with clinical sign/animal

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 1.2 - Clinical signs - During recovery - Group incidence

STUDY NO.:

Interval: 1 - 2 Weeks Group Observation	1 (5)	(5) (5)
	Q	d b
Defecation absent	5 2.0	5 2.0
TREMORS		
Tremors absent	5 2.0	5 2,0
Key: () = Number of animals alive at start of interval a = Number of animals affected b = Number of weeks with clinical sign/animal	ve at start of interval sected clinical sign/animal	

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 2.1 - Motor activity - At the end of treatment - Group mean data

STUDY NO.:

MALES

	Con	Control		Gron	Group 2		Gro	Group 3		Grond	4	
Parameter/units	Mean SD n Mean SD n Mean SD n Mean SD n	as	ا د ا	Mean	SD	۲	Mean	SD	E	Mean	SD	# !
Counter display	904.6	208.0	10	208.0 10 925.6	198.7 5 1142.2	ហ	1142.2	271.9 5 846.1	ηŷ	846.1	322.2 10	10
Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous (set if group variances are inhomogeneous)	Subgroup(s): 1 ficantly different from control at p < 0.05 ficantly different from control at p < 0.01 rest if group variances are homogeneous (\$)	Subgroup(s): 1 ant from control ant from control dances are homo	s): 1 ontrol ontrol e homo	at p < 0. at p < 0. geneous	05 01 (\$)							

TABLE 2.1 - Motor activity - At the end of treatment - Group mean data

	Control	01	1	Group 2	100		Control Group 2 Group 4	1 0		Group 4	4	i :
Farameter/units	Mean	d a	c Ca	mean	OS .	c	wean 5D n Mean 5D n Mean 5D n Mean 5D n Mean 5D n	SD	ا د ا	n mean	O'S	۵ <u>ا</u>
Counter display	1027.1		10	145.6 10 922.8	126.9 4	দ্ৰু	956.6	67.5 5	ហ	936.0	171.9 10	10
Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous Modified t test if group variances are inhomogeneous (\$)	Sub different different group varian group varian	Subgroup(s): 1 int from control int from control iances are homoriances are inh	: 1 htrol homog	at p < 0.05 at p < 0.01 Jeneous omogeneous ((s							

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 2.2 - Motor activity - At the end of recovery - Group mean data

STUDY NO.:

MALES

	1			4	_	
	TOTALOS			dio 15	3'	
Parameter/units	Mean	SD	ß	Mean	SD	¢

ß

241.7

864.2

S

280.1

930.4

Counter display

Controls from group(s): 1 ** mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous Modified t test if group variances are inhomogeneous (\$)

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 2.2 - Motor activity - At the end of recovery - Group mean data

STUDY NO.:

FEMALES

Control Group 4 Parameter/units Mean SD n Mean SD n	Control Mean	SD	r	Group Mean	SD	g !
Counter display	979.8 159.9	و. و.	w	929.0	96.8	ഹ

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 3.1 - Body weight (g) - During treatment - Group mean data

MALES

Group(s)		ä	¥ C	کر هم 8	۲.	s & \$2	50	
	1 (n) Mean 19		10 251.67	10 292.10	10 321.58	10 346.56	351.08	
	SD	ა. ფ	5.66	8.36	11.81	11.76	9.58	
2	(u)	ហ	ហ	S	S	w	ທ	
	Mean	199.35	248.83	291.84	315.54	345.82	337.91	
	SD	7.28	7.73	10.09	14.11	16.90	14.31	
т	(n)	ιΩ	ഗ	ιŷ	ις	ъ	Ŋ	
	Mean	199.71	254.91	293.88	322.67	351.92	346.24	
	SD	5.33	6.07	3.67	9.03	7.66	11.27	
7'	(u)	10	0,1	10	10	10	ស	
	Mean	199.33	249.58	292.24	315.66	321.36**	278.69**	
	SD	7.04	7.46	8.61	12.27	16.25	24.70	

Note: ! = Pretest phase; " = Dosing phase; * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous (\$)

TABLE 3.1 - Body weight (g) - During treatment - Group mean data

FEMALES

Group(s) 1		174.55 1	88 1 1	15	22	90
1 (n) 10 Mean 158.51 SD 5.88 (n) 5 Mean 159.66 SD 6.66 SD 6.66 SD 6.66 SD 6.68					ļ)
Mean SD Mean SD Mean SD SD SD SD SD SD SD Mean SD SD SD SD SD SD SD SD			> 1	10	10	5
SD (n) Mean SD (n) Mean SD			91.88	203.24	222.92	235.19
(n) Mean SD (n) Mean SD			12.24	9.53	12.14	10.93
			Ŋ	ψ	ស	7
			76.16	213.44	224.97	237.02
158			10.83	10.67	10.19	6.18
158			ŧΛ	ហ	ហ	រេ
Ø	28		94.78	204.80	219.57	231.64
	.18		13.99	13.53	10.97	13.29
			10	10	10	ιΩ
Mean 158,92	92		89.75	202.43	213.40	213.07**
φ	30		10.54	6.89	10.26	7.70

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 3.2 - Body weight (g) - During recovery - Group mean data

STUDY NO.:

MALES

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Group(s)		1	ω.	15
1 (n)	(u)	361 56	27 C S	2. 8. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
	SD	14.45	16.96	19.32
ት	(n)	ស	ហ	, ,
	Mean SD	302.16** 11.63	281.52** 36.96	276.64** 32.49

Note: Data for Recovery phase

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Statistical analysis: Modified t test if group variances are inhomogeneous (\$)

4 4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 3.2 - Body weight (g) - During recovery - Group mean data

STUDY NO.:

FEMALES

Group (s)		1	Group(s) Day of Phase 15	15
	(n) Mean SD	231.34 9.42	1 (n) 5 Nean 231.34 233.68 225.59 SD 9.42 11.63 8.92	2225 225 - 59 8 - 92
ਧ '	(n) Mean SD	5 207.92** 7.53	5 217.92* 9.52	204.76** 8.87

Note: Data for Recovery phase

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

TABLE 4.1 - Body weight change (g) - During treatment - Group mean data

				, ,	
Group(s)		 ໝ	Day 15	0	29
	!	10	10	10	
	Mean	40.42	69.91	94.89	95.83
	SD	6.66	9,66	11.31	11.20
23	(u)	'n	ιŊ	ហ	ι'n
ı	Mean	43.01	66.71	66.96	89.07
	SD	3.97	8.55	9.59	8.14
ო	(u)	ស	ιΩ	ιń	ហ
	Mean	38.98	67.76	97.01	91.34
	SD	2.78	8.79	11.62	13.00
4	(u)	10	10	10	ហ
	Mean	42.66	66.08	71.78**	27.26**
	SD	5.78	10.74	16.62	26.92

Note: ! = Dosing phase; " = Recovery phase

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

" = mean body weight change relevant to Day I of study

TABLE 4.1 - Body weight change (g) - During treatment - Group mean data

FEMALES

Group (s)	Group (s)		D & Y	15 Day of 22	50
	(n) Mean SD	10 17.33 4.39	10 28.69 7.18	48.37 9.01	
73	(n) Mean SD	5 15.17 4.48	36.5 6.86 86	48.17 10.46	4 57.59 4.66
m	(n) Mean SD	5 21.36 10.75	5 31.38 10.05	46.15 9.02	5 58.22 12.87
4	(n) Mean SD	10 13.63 9.45	10 26.32 6.11	10 37.29* 10.84	38.67 7.99

Note: ! = Dosing phase; " = Recovery phase * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous Modified t test if group variances are inhomogeneous (\$) " = mean body weight change relevant to Day I of study

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 4.2 - Body weight change (g) - During recovery - Group mean data

MALES

			рау оf Ръз	an an
Group(s)		1	œ	35.5
	(n)		3	5
	Mean	113.46	131.53	120.5
	SD	13.52	15.94	18.09
4	(u)	ĸ٦	ιΩ	ъ
	Mean	54.42**	33.78**	28.90**
	SD	16.72	43.25	40.11

Note: Data for Recovery phase

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

* = mean body weight change relevant to Day I of study

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 4.2 - Body weight change (g) - During recovery - Group mean data

STUDY NO.:

FEMALES				FEMALES
Group (s)		1	Day of Phase 8	Day of Phase 1
1	(n) Mean SD	65.3 8.86	5 67.65 7.62	59.56 7.13
단	(n) Mean SD	5 30.11 12.67	5 40.11** 9.81	5 26.95 10.69

Note: Data for Recovery phase

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

STUDY NO.:

MALES

	Control	roll		Group 2	2		anox5			Group	4	!
Parameter/units	Mean	SD	٤	Mean	SD	¢ !	Mean	SD	g	Mean	gs	c i
RED BLOOD CELL COUNT 10^12/1	7.914	0.243	ស	7.808	0.327	ស	7.516	0.213	'n	8.192	0.421	ιn
HAEMOGLOBIN g/dl	15.08	0.33	ഗ	14.96	0.57	ъ	14.72	0.62	rD.	15.62	0.61	r)
HAEMATOCRIT %	43.10	0.96	ம	41.80	1.99	സ	41.54	1.94	ഗ	44.24	1.62	Ŋ
MEAN RED BLOOD CELL VOLUME fl	54.46	9°.	Ŋ	53.54	1.36	ιΩ	55,26	1.22	w	54.06	1.21	S
MEAN CORPUSCULAR Hb pg	19.08	0.60	IJ)	19.20	0.45	Ŋ	19.60	0.41	ъ	19.10	0.31	ις
MEAN CORPUSCULAR Hb CONC. g/dl	35.02	0.34	ъ	35.84*	0.49	ហ	35.48	0.23	ഹ	35.32	0.45	ъ

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

\$tatistical analysis: Dunnett's test if group variances are homogeneous

Note: Data for Dosing phase

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

MALES

	Control Group 2 Group 3 Group 4	10,		Group 2	8		Group 3	m		Group	4	
Parameter/units	Mean	SD	£	SD n Mean	SD	SD u	Mean	SD	r.	Mean	SD	ជ
PLATELETS 10°9/1	888.4 1. 888.4	76.0	i i i	76.0 5 828.0	90.1	i i i	90,1 5 757.0*	61.5		888.4 76.0 5 828.0 90,1 5 757.0* 61.5 5 876.2 63.3	63.3	្រ
PROTHROMBIN TIME sec	15.82	0.72	w	0.72 \$ 16.92*	0.66	Ŋ	0.66 5 16.12	0.43	ιΩ	0.43 5 17.98** 0.49	0.49	Ŋ

Controls from group(s): 1
 * = mean value of group is significantly different from control at p < 0.05
 ** = mean value of group is significantly different from control at p < 0.01
 Statistical analysis: Dunnett's test if group variances are homogeneous
 Modified t test if group variances are inhomogeneous (\$)</pre>
Note: Data for Dosing phase

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

MALES

	5	Control		dnozg	ъ 2 2		Group	m		Group	4.	
Parameter/units	Mean	SD	g i	Mean	SD	g	Mean	SD	ដ	Mean	SD	۲
WHITE BLOOD CELL COUNT 10^9/1	8.414	0.724	ம	8.778	1.296	ហ	8.164	2.609	Ŋ	6.824	0.671	Ŋ
NEUTROPHILS %	20.28	4.28	κυ	12.46*	3.91	ഹ	16.42	4.59	Ŋ	14.50	5.64	S
LYMPHOCYTES %	75.00	3.70	ηÙ	81.48	3.33	לח	77.92	4.68	பி	78.30	6.92	ស
MONOCYTES %	2.92	0.26	ഗ	3.60	06.0	ស	3.26	0.64	S	4.32	1.30	ιΩ
EOSINOPHILS (S)	06.0	0.34	ស	1.26	0.23	ιΩ	1.24	0.38	ιΩ	1.24	1.02	Ŋ
BASOPHILS %	0.20	0.07	ហ	0.20	0.07	Ŋ	0.34	0.13	ιΩ	0.62**	0.19	ιΩ
LARGE UNSTAINED CELLS	0.74	0.05	ъ	96.0	0.28	មា	0.80	0.25	ιΩ	1.06	0.39	гO

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Dosing phase

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

FEMALES

			! !					-	1]
	Mean	Control	¤	Mean	sroup 2	ជ	Mean	Group 3	ជ	стопр Меал	GS The date	¤
RED BLOOD CELL COUNT 10^12/1	986.9	0.303	Ŋ	7.090	0.104	4	7.128	0.153	ம	7.066	0.288	ı s
HAEMOGLOBIN g/dl	13.64	0.56	ιŊ	14.03	0.17	4	14.00	0.31	ъ	13.76	0.46	Ŋ
Haematocrit %	37.50	1.76	ഹ	38.58	0.43	4	38.44	0.88	цŷ	38.06	1.35	ഹ
MEAN RED BLOOD CELL VOLUME fl	53.62	0.94	Ŋ	54.38	0.83	4	53.98	1.05	ഗ	53.90	1.49	ъ
MEAN CORPUSCULAR Hb Pg	19.48	0.38	ເດ	19.78	0.26	4	19.62	0.30	ស	19.46	0.48	ស
MEAN CORPUSCULAR HD CONC. g/dl	36.36	0.42	ιÙ	36,35	0.30	4	36.34	0.51	ß	36.14	0.51	ω

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Note: Data for Dosing phase

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

FEMALES

	1 1 1			1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1					111111	1
		Control		,	Group 2	2	!	Group 3	س ر		Group	₽r.	
Farameter/units mean 5D n	! ! !	Rean	מ	=	on n mean	2	=	Mean 			n Mean	J 0 1	=
PLATELETS (3	ŝ	743.0		ず	414.9 4 994.0	65.5 4 905.2	4		58.6	w	58.6 5 822.2	44.9	w
PROTHROMBIN TIME sec		16.90	0.26	m	0.26 3 16.95	0.59 4 16.78	4		0.36	ιΩ	0.36 5 16.80	1.06	ស

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Dosing phase

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 5.1 - Haematology - At the end of treatment - Group mean data

	Cor	Control		Group	l N	1	Group 3 Group 4	10 3		Group	10 4 di	[
Parameter/units	Mean	SD	c i	Mean	SD	ជ	Mean	d OS	g	Mean	SD	a
WHITE BLOOD CELL COUNT (\$) 10^9/1	7.124	1.052	ιÙ	7.175	0.411	4	5.924	0.848	ιΩ	5.806	2.475	ιΩ
NEUTROPHILS %	9.48	4.09	ιŊ	12.48	3.60	4	11.50	3.84	Ŋ	88.	1.61	3
LYMPHOCYTES %	85.06	3.73	ហ	81.00	4.66	4	81.96	3.25	ъ	85.50	1.41	ഹ
MONOCYTES %	3.20	1.15	ιΩ	ω ω ω	0.94	4	3.18	0.76	Ŋ	3.20	0.63	ഹ
EOSINOPHILS %	1.44	0.22	κ	1.63	0.40	4	2.34*	0.74	τÙ	1.40	0.44	ហ
BASOPHILS	0.14	0.05	ц)	0.15	90.0	4	0.16	0.05	ហ	0.16	0.05	пy
LARGE UNSTAINED CELLS	0.72	0.13	ιΩ	0.88	0.10	4	0.86	0.26	ιΩ	06.0	0.19	ω

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Note: Data for Dosing phase

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

MALES

		1111111	1			
Control Parameter/units Mean SD n	Control Mean	rol SD		Group 4 Mean SD	ļ	ជ
COUNT	8.236	0.166		7.502*		
HAEMOGLOBIN g/dl	15.22	0.31	ĸ	13.96*	0.92	ιn
HAEMATOCRIT %	42.80	0.99	ហ	37.90**	2.75	υĵ
MEAN RED BLOOD CELL VOLUME fl	51.98	96.0	ഹ	50.54	1.13	ιn
MEAN CORPUSCULAR HD Pg	18.46	0.23	w	18.64	0.29	νſ
MEAN CORPUSCULAR HD CONC. g/dl	35.56	0.25	ιΩ	**06.98	0.70	ιń

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

MALES

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1		1	
Parameter/units	Control Mean	ol SD n	ន	Group Mean	SD	Control Group 4 Paxameter/units Mean SD n Mean SD n
PLATELETS 10°9/1	926.6	50.9	ហ	50.9 5 1080.4 183.0	.83.0	ឋ)
PROTHROMBIN TIME sec	16.22	0.50	ις	17.50*	0.80	5

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Note: Data for Recovery phase

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

MALES

1	Control	101		Group 4	4	Control Group 4
Parameter/units	Mean	SD	ا ا	Mean	SD	
CELL COUNT	10.584	1.786	rΩ	8.920	2.418	υĵ
NEUTROPHILS %	13.66	5.70	ιÇ	11.72	8.20	r.
LYMPHOCYTES	81.20	6.51	r)	83.02	8.86	
MONOCYTES \$	2.84	0.59	ιΩ	3.16	0.55	ιΩ
EOSINOPHILS	1.42	0.75	ស	1.08	0.24	ιΛ
BASOPHILS %	0.16	0.05	ĸЛ	0.16	0.05	w
LARGE UNSTAINED CELLS	0.76	0.13	rt?	0.84	0.11	ıŊ

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

FEMALES

Parameter/units	Control Mean	lo: SD	 #	Control SD n Mean SD n	4 SD	Control Mean SD n Mean SD n
	7.532	0.201	ហ	7.058*	0.263	ιū
HAEMOGLOBIN g/dl	14.40	0.43	ιΩ	13,50*	0.55	ιŊ
HAEMATOCRIT %	39.70	1.05	ហ	37.50*	1.43	עו
MEAN RED BLOOD CELL VOLUME fl	52,68	0.54	மி	53.12	0.54	ιΩ
MEAN CORPUSCULAR Hb pg	19.12	0.43	ιΩ	19,16	0.44	ιΩ
MEAN CORPUSCULAR Hb CONC. g/dl	36.28	0.58	ιΩ	36.02	0.58	ıΩ

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

, 4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

SIUDY NO.:

FEMALES

Control Group Parameter/units Mean SD n Mean	Control Mean	rol SD		Group 4 Mean S	4 SD	Control Group 4 Mean SD n Mean SD n
PLATELETS 10^9/1	894.2	46.1	ιŊ	872.8	94.1	ιŋ
PROTHROMBIN TIME sec	16.98	0.45	Ŋ	5 16.38	0.40	υ γ
Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous Note: Data for Recovery phase	Sul different different roup varia group varia	Subgroup(s): 1 int from control int from control itances are home ixiances are inh	trol ntrol ntrol homo	Subgroup(s): 1 ficantly different from control at p < 0.05 ficantly different from control at p < 0.01 est if group variances are homogeneous test if group variances are inhomogeneous (\$)	5 11 (\$)	

TABLE 5.2 - Haematology - At the end of recovery - Group mean data

FEMALES

	Control	0.1		Group 4	4	Control
Parameter/units 	Меап	SP	۲	Mean SD	es	1
WHITE BLOOD CELL COUNT 10~9/1	8.656	1.684	មា	7.730	0.738	ıΩ
NEUTROPHILS	8.60	1.02	ιΩ	7.84	2.56	v 7
LYMPHOCYTES %	84.44	0.42	ഹ	86.94	2.46	LΩ
MONOCYTES &	3.98	0.68	νū	3.00*	0.46	ιγ
EOSINOPHILS	1.60	0,48	ιζ	1.04	0.27	v)
BASOPHILS	0.20	0.07	r)	0.14	0.05	υĵ
LARGE UNSTAINED CELLS	1.20	0.19	ιΩ	1.06	0.48	ı,

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

MALES

***************************************				1						Ì			!
Parameter/units		Mean	CONCECUE	ة ا	Mean	:	۵ <u> </u>	Mean	;	c	Mean	SD	¢ !
ALKALINE PHOSPHATASE U/l		257.92	40.78	ហ	240.86	15.84	Ŋ	303.28	34.38	r)	341.82*	61.48	ស
ALANINE AMINO-TRANSFERASE U/1	(\$)	31.56	2.81	ιŊ	33.94	7.70	ъ	129.20	103.26	ъ	100.62**	33.16	ស
ASPARTATE AMINO-TRANSFERASE U/1	(\$)	81.10	8.16	សា	75.28	7.77	ഗ	127.90	49.84	Ŋ	130.30*	33.95	Ŋ
GAMMA-GLUTAMYL TRANSFERASE U/1	(\$)	0.220	0.164	ഹ	0.200	0.308	ഹ	0.020	0.045	Ŋ	0.060	0.055	ιΩ
rotal bilirubin mg/dl		0.112	0.015	ស	0.074	0.032	ហ	0.076	0.022	'n	0.190**	0.041	Ŋ
TOTAL CHOLESTEROL mg/dl		74.32	11.92	гD	49.16**	9.84	r)	57.02*	7.18	ιŊ	78.52	7.62	u)
TRIGLYCERIDES mg/dl	<u>(\$</u>	37.86	e. e	ល	27.18	7.78	மு	18.50**	1.61	η	36.24	2.37	ιŊ
GLUCOSE mg/dl		106.58	14.32	ß	121.18	18.14	ហ	119.38	8.92	យ	124.20	7.26	ιO

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Note: Data for Dosing phase

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

MALES

Parameter/units		Control SD	ļ c	Group 2 n Mean SD	up 2 SD	s	Group 3 Mean SD	. д. З. З.	Ę.	Group	SD	, a
						1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1			E E
UREA mg/dl	45.48	6.14	ស	47.68	3.35	ഗ	52.62	4.98	ம	67,46**	3.42	ស
CREATININE mg/dl	0.336	0.053	ιŊ	0.322	0.028	ம	0.316	0.037	Ŋ	0.298	0.026	ιΩ
CHLORIDE mmo1/1	92.90	1.00	ιŊ	93.60	1.05	ம	93.56	0.83	ιŊ	94.94**	0.72	ηυ
INORGANIC PHOSPHORUS mg/dl	8.54	0.33	кJ	89 53 60	0.34	ស	7.78*	0.27	ω	* * 89 * 9	0.50	Ŋ
CALCIUM (\$) mmol/l	2.624	0.077	πλ	2.636	0.060	ι)	2.612	0.033	Ŋ	2.312	0.337	ĸΩ
SODIUM mmo1/1	144.18	0.54	ιΩ	143.00	1.88	ιÙ	150.26**	1.25	ď	146.10	0.86	ъ
POTASSIUM (\$) mmol/l	3.874	0.161	Ŋ	3.720	0.072	ស	3.996	0.117	ហ	4.488	0.592	ഗ

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Dosing phase

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

MALES

	1			-			111111					ı	!
Daramotor/linite		Control		r r	Ž d	Group 2	Ē	Group 3	۳ د	£	Group 4	4. C.	£
						7	:	110001 11 47 110001 11	- 1			3	:
TOTAL PROTEIN 9/dl	(\$)	6,46	0.18	ηζ	5.90**	0.19	ស	0.18 5 5.90** 0.19 5 6.16	0.17	ഹ	0.17 5 5.40*	0.60 5	ιΩ
ALBUMIN g/dl		4.00	0.07 5	ம	3,78	0.08	ιΩ	3.98	0.15 5	Ŋ	3.50**	0.27	ιń
GLOBULIN g/dl	(\$)	2.46	0.11 5	ഗ	2.12*	0.15 5 2.18	ъ	2.18	0.20	ςς	0.20 5 1.90	0.49	ιΩ
ALBUMIN/GLOBULIN RATIO	(s)	1.63	0.05	ഗ	0.05 5 1.79	0.12	'n	0.12 5 1.84	0.21	ഹ	0.21 5 1.93	0.43	ហ

Controls from group(s): 1
 * = mean value of group is significantly different from control at p < 0.05
** = mean value of group is significantly different from control at p < 0.01
Statistical analysis: Dunnett's test if group variances are homogeneous
Modified t test if group variances are inhomogeneous (\$)
Note: Data for Dosing phase</pre>

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

STUDY NO.:

FEMALES

		Control	; E	Gr	Group 2	i t T	Group) 	droup		3
Parameter/units	Mean	SD	5	Mean	SD		Mean	SD	5	Mean	SD	5
ALKALINE PHOSPHATASE U/l	207.84	29.86	σ	175.63	25.89	4.	237.76	25.24	(J)	220.30	50.65	ហ
ALANINE AMINO-TRANSFERASE (\$) U/l	31.14	3.00	ഗ	28.03	3 16	44	44.64	13.94	ហ	38.86	12.16	СЛ
ASPARTATE AMINO-TRANSFERASE U/1	80.88	14.22	Çŋ	73.05	9 34	45.	84.20	11.29	ഗ	82.30	12.41	ហ
GAMMA-GLUTAMYL TRANSFERASE (\$)	1.320	1.724	Ćī	1.475	0.330	4	0.800	0.300	ហ	2.340	2.362	ហ
TOTAL BILIRUBIN mg/dl	0.090	0.017	Ć	0.063	0.010	4.	0.036**	0.015	ú	0.060*	0.023	ហ
TOTAL CHOLESTEROL mg/dl	80.54	12.00	ω	70.58	86.8	4	71.34	10.23	យ	75.46	12.16	ćπ
TRIGLYCERIDES mg/dl	31.30	7.08	Çī	26.10	8.46	4.	27.72	4.06	տ	30.60	6. 84	ហ
mg/dl mg/dl	111.58	7.99	ហ	105.65	14.48	4.	117.06	10.03	ហ	133.80**	6.47	Cri
Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous Modified t test if group variances are inhomogeneous (\$)	antly diffe antly diffe if group v	Subgroup(s): 1 grent from contro grent from contro fariances are hom variances are in	s); 1 contro contro e hom	l at p < lat p < logeneous	0.05 0.01 sous (\$)							

Note: Data for Dosing phase

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

	Con	Control		Group	2		Group	Ξ̈́ω		anona	Ö A
Parameter/units	Mean	SD	Þ	Mean	i	Þ	Mean	SD	Þ	. 3	SD n
UREA mg/dl	48.90	5,99	ம	47.38	2.17	44.	49.30	ა გ	វ្រា	60.84*	9.13
CREATININE mg/dl	0,446	0.042	U	0.410	0.050	4.	0.424	0.024	G	0.380*	0.035
CHLORIDE mmol/l	94.34	0.96	ທ	95.58	1.19	4	96.54*	1.31	ທ	96.00	1.03
INORGANIC PHOSPHORUS mg/dl	7.47	0.37	ſл	7.51	0.36	44	6.97	0.37	(JI	6.79*	0.42
CALCIUM mmol/1	2.614	0.032	ហ	2.705	0.054	44	2.590	0.137	ۍ	2.664	0.092
mmol/1	143,94	0.59	ഗ	143.45	0.91	4	145.66	0.75	ζħ	143.68	1.67
POTASSIUM nunol/1	3.700	0,454	ഗ	3.605	0.131	44	3.434	0.304	Ŋ	3.552	0.296
Controls from group(s): 1 * = mean value of group is signi	Subgroup(s): 1 significantly different from control	Subgroup(s): 1): 1 ntrol	at A A	0.05						

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Dosing phase

TABLE 6.1 - Clinical chemistry - At the end of treatment - Group mean data

STUDY NO.;

FEMALES	

		uoo	Control	1	Group	2 at		Group	υ	1	Group 4	up 4	1
Paramet	Parameter/units	Меал	SD		Mean	SD	ם	Mean	. SD n	, ,	Mean	SD	B
TOTAL PROTEIN g/dl	ROTEIN	6. 26	0.21	ហ	6.40	0.27	.4	6.60	0.16	υ	6.26	0.23	(JT
ALBUMIN g/dl		4.16	0.15	σ	4.18	0.21	44.	4.40	0.16	ū	4.38	0.18	ſ'n
g/dl GLOBULIN	И	2.10	0.23	ហ	2.23	0.17	44	2.20	0.12	Ċri	1.88	0.13	ហ
ALBUMIN	ALBUMIN/GLOBULIN RATIO	2.00	0.25	மு	1.89	0.18	44	2.01	0.16	ζī	2.34*	0.18	CH
Control * = me ** = me Statist	Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous Modified t test if group variances are inhomogeneous (\$)	Sntly differenntly differently	Subgroup(s): 1 ent from contro ent from contro chances are hom ariances are in	ntrol ntrol ntrol homo	at p < 0 at p < 0 geneous	.05 .01 s (\$)							
Note: D	Note: Data for Dosing phase	Note: Data for Dosing phase											

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

STUDY NO.:

MALES						
	Col	Control		Group	10 4	
Parameter/units	Mean	SD	=	Mean	SD	
	216.20	21.08	ഗ	305.44**	33,60	(n
alanine amino-transferase U/1	31.98	1.84	ហ	35.18	10.68	(J
ASPARTATE AMINO-TRANSFERASE U/1	61,48	թ	U	60.84	8.69	v
GAMMA-GLUTAMYL TRANSFERASE U/l	1.120	0.936	ហ	0.960	0.472	σ
TOTAL BILIRUBIN mg/dl	0.128	0.026	Œ	0.198	0.091	(h
TOTAL CHOLESTEROL mg/dl	75.56	7.98	ហ	132.76**	22.36	CI
TRIGLYCERIDES mg/dl	42.64	4.75	ഗ	23.54**	5. 64	ហ
mg/dl mg/dl	119.62	4.00	Ċ1	144.10	23.60	S

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

Volume I

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

MALES						
	Control	trol		dnox9	ا وا 4	
					: ! ! ! !	
UREA mg/dl	44.52	6.76	S	60.12**	7.29	U
CREATININE mg/dl	0.348	0.037	ហ	0.230**	0.024	Ch
CHIORIDE mmo1/1	92.92	0.68	ហ	94.24	1.44	ហ
INORGANIC PHOSPHORUS	8.12	0.18	w	7.00	1.09	(5
CALCIUM mmo1/1	2.686	0.115	ζŋ	2.548	0.225	(J.
SODIUM	147.22	0.53	ω	5 144.14**	1.55	v
POTASSIUM mmol/l	4.278	0.249	v	4.490	0.740	ហ

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

			!	 	 	
	Con	Control		droup	ซ 4-	
Parameter/units	Mean	SD	5	Mean	SD	1) 11
TOTAL PROTEIN g/dl	6,46	0.09	ហ	5.74*	0.51	CH
ALBUMIN g/dl	3.88	0.11	ហ	3.84	0.35	(ភ
g/dl globulin	2.58	0.18	ហ	1.90**	0.19	G
ALBUMIN/GLOBULIN RATIO	1.51	0.13	ហ	2.02**	0.12	G
Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** Modified t test if group variances are inhomogeneous (\$) ** Note: Data for Recovery phase	S ly differer ly differer group vari	Subgroup(s): 1 ent from control ent from control riances are hom ariances are inh): 1 ntrol ntrol homo	at p < 0. at p < 0. geneous omogeneous	05 01 (\$)	
Note: Data for Recovery phase						

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

STUDY NO.:

FEMALES						
Parameter/units	Con	Control	3	Group Mean	up 4 SD	B
alkaline phosphatase U/l	164.40	14.39	ம	140.74	23.33	ن.
alanine amino-transferase U/1	26.48	2.80	U	28.76	4.51	cn
ASPARTATE AMINO-TRANSFERASE U/1	76.22	5.99	ഗ	54.30**	1.46	(ri
GAMMA-GLUTAMYL TRANSFERASE U/1	1.260	0.716	ហ	0.920	0.729	ζſ
TOTAL BILIRUBIN mg/dl	0.164	0.009	Çī	0.104**	0.015	ហ
TOTAL CHOLESTEROL mg/dl	70.06	15.54	5	78.08	3.46	u
TRIGIYCERIDES mg/dl	43.54	υ ω σ	மு	31.58**	.4. 86	ဟ
mg/dl mg/dl	103.74	6.41	Un	135.78*	22.68	S

Controls from group(s): 1

* = mean value of group is significantly different from control at p < 0.05

** = mean value of group is significantly different from control at p < 0.01

** = mean value of group is significantly different from control at p < 0.01

Statistical analysis: Dunnett's test if group variances are homogeneous

Modified t test if group variances are inhomogeneous (\$)

Note: Data for Recovery phase

Volume I

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

t pan an ama me							
Parameter/units	Mean	Control SD	ь	Group Mean	d 4 ds	13 1 1 1 1 1 1 1 1 1	
UREA mg/dl	67.82	7,50	ហ	61.06	9.77	(J	
CREATININE mg/dl	0.552	0.067	ហ	0.358**	0.041	U	
CHIORIDE mmol/1	95.00	0,4B	ហ	93.88*	0.91	ហ	
INORGANIC PHOSPHORUS	7.32	0.32	U	6.80*	0.18	v	
CALCIUM nuno1/1	2.690	0.053	ហ	2.734	0.154	ហ	
SODIUM mmnol/1	147.92	0.51	ທ	145.48**	0.62	OT.	
POTASSIUM nmol/1	3.322	0.240	ហ	3.722*	0.220	U	
Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous Modified t test if group variances are inhomogeneous (\$) Note: Data for Recovery phase	y differen group var:	Subgroup(s): 1 ont from contro ont from contro ciances are hom ariances are in): 1 ntro ntro hom e in	latp<0. latp<0. pgeneous homogeneous	05 01 ; (\$)		
Note: Data for Recovery phase							

TABLE 6.2 - Clinical chemistry - At the end of recovery - Group mean data

FEMALES						
Parameter/units	Coni	Control SD	p	Group Mean	p 4 SD	
TOTAL PROTEIN g/dl	6.20	0.25	ţŗ	6.40	0.36	(n
ALBUMIN g/dl	4.12	0.15	ហ	4.50*	0.32	(n
g/dl globulin	2.08	0.19	ហ	1.90	0.16	
ALBUMIN/GLOBULIN RATIO	1.99	0.20	ហ	2.38*	0.25	Or .
Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 Statistical analysis: Dunnett's test if group variances are homogeneous (\$) Note: Data for Recovery phase	y differen y differen group vari	Subgroup(s): 1 ent from contro. ent from contro. riances are home	;); 1 introl introl introl introl	at p < 0. at p < 0. geneous omogeneous	05 01 (\$)	

TABLE 7.1 - Urinalysis - At the end of treatment - Group mean data

		Control		Gro	Group 2		Group	ùр 3		Gro	Group 4	
Parameter/units	Mean	SD	p	Mean	sD n	В	Mean	SD	Ħ	Mean	SD	į
URINE VOLUME (OVERNIGHT)	5.80	0.57	ഗ	6.60	0.96	ហ	6.80	1. 35	ഗ്ര	1.35 5 7.00	0.79	
SPECIFIC GRAVITY	1.0180	0.0045	ເກ	5 1.0230	0.0045	Ćī	1.0120	0.0057	ហ	5 1.0150	0.0035	ιπ
Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p	cantly differe cantly differe tif group var	Subgroup(s): 1 ent from controlent from controlent from controlentances are homo ariances are inl): 1 introl introl indmode indmode	l at p < (l at p < (lomogeneous).05).01 ls (\$)							

TABLE 7.1 - Urinalysis - At the end of treatment - Group mean data

	co	Control		7 <u>9</u>	Group 2		3.0 2.0	Group 3		Gro	Group 4	į
Parameter/units	Mean	SD n Mean SD n Me	5	Mean	SD	Þ	E D	!	5	SD n Mean SD n	SD	[=
URINE VOLUME (OVERNIGHT) ml	6.30	0.91	ហ	7.25	1.94	4.	4.80	1.82	Çī	4.20	1.79	ιπ
SPECIFIC GRAVITY	1.0150	0.0035	Çī	5 1.0175	0.0029	.42	1.0220	0.0057	ഗ	5 1.0270** 0.0067	0.0067	(Jī
Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p	antly differe cantly differe t if group va st if group va	Subgroup(s): 1 sht from control sht from control criances are homo): 1 ntro ntro hom e in	l at p < l at p < ogeneous homogeneo	0.05 0.01 us (\$)							

TABLE 7.2 - Urinalysis - At the end of recovery - Group mean data

	ς.	Control		gro Gro	Group 4	
Parameter/units	Mean		1 1	Mean	SD n Mean SD n	Þ
URINE VOLUME (OVERNIGHT) ml	8. 60	3,49	5	7.10	3.17	ហ
SPECIFIC GRAVITY	1.0090	0.0022	ហ	5 1.0190*	0.0065	ເກ
Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.01 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p	cantly differ cantly differ t if group va st if group v	Subgroup(sent from coent from coent from coriances are): 1 ontro ont	latp latp datp ogeneous nomogeneous	0.05 0.01	

TABLE 7.2 - Urinalysis - At the end of recovery - Group mean data

STUDY NO.:

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Control		dt.	Group 4	
Parameter/units	Mean	SD	B	Mean	SD	þ
URINE VOLUME (OVERNIGHT)	3.40	1.67	ເກ	5 5.50	2.24	ហ
SPECIFIC GRAVITY	1.0210	0.0074	σ	5 1.0270	0.0045	ഗ
Controls from group(s): 1 * = mean value of group is significantly different from control at p < 0.05 ** = mean value of group is significantly different from control at p < 0.01	cantly differe	Subgroup(s): 1 ent from control): 1 ontro	בר לי ט'ט ^ ^	0.05	
Statistical analysis: Dunnett's test if group variances are homogeneous Modified t test if group variances are inhomogene	Dunnett's test if group variances are homogeneous (\$)	riances are ariances ar	e homo	ogeneous homogeneo	us (\$)	

Note: Data for Recovery phase

TABLE 8.1 - Terminal body weight (g) - Final sacrifice - Group mean data

STUDY NO.:

MALES

Controls from group(s): 1 Data homogeneous by Bartlett's test (Dunnett's test)

Group Number/group Mean Standard deviation Group diff. at p < 0.05 Group diff. at p < 0.01
Control 5 346.94 9.70
333 55 24.88 330 95
3 341.18 10.75 25.95 33.94
277.10 24.25 24.25 25.95* 33.94*

Analysis of variance: F ratio = 20.73 Df = 3/16 F probability = 0.000 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 8.1 - Terminal body weight (g) - Final sacrifice - Group mean data

STUDY NO.:

Controls from group(s): 1	oup(s): 1	Data homogeneous by Bartlett's test (Dunnett's test)	tlett's test (Dunnett'	s test)	
droab	Control	Group Control 2 3	ω	4.	
Number/group	វា	4	ហ	ហ	
Mean	221.56	221.05	212.82	196.14	
tandard deviation	10.62	8,38	11.21	8.83	
roup diff. at p < 0.05		17.37	16.38	16.38*	
roup diff. at p < 0.01		. 22,81	21.51	21.51*	

Analysis of variance: f ratio = 6.91 Df = 3/ 15 f probability = 0.004 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 8.2 - Terminal body weight (g) - Recovery sacrifice - Group mean data

STUDY NO.:

Controls from group(s): 1	Data homogeneous by BartLett's test (Dunnett's test	t's test (Dunnett's test)
Group Control 4	Control	4
Number/group	ហ	ហ
Mean	364.66	273.60
Standard deviation	18.41	31.02
Group diff. at p < 0.05		37_32*
Group diff. at p < 0.01		54.31*

Analysis of variance: F ratio = 31.86 Df = 1/8 F probability = 0.001 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 8.2 - Terminal body weight (g) - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

Controls from group(s): 1	
Data homogeneous by Bartlett's test (Dunnett's test)	

Group
Number/group
Mean
Standard deviation
Group diff. at p < 0.05
Group diff. at p < 0.01 Control 5 222.52 6.83 202.666 8.92 11.62*

Analysis of variance: F ratio = 15.62 Df = 1/8 F probability = 0.004 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

MATHIC

Organ: Adrenals	Controls from group: 1	Data inhomogeneo	Data inhomogeneous by Bartlett's test (Modified	(Modified t test)	
) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4	
Group	Control	•		1,	
Nimber/aroun	ር 	ເກ	បៈ	C T	
deed.	0_0486	0.0498	0.0500	0.0428	
ataskask kairintion	0-0099	0.0029	0.0125	0.0035	
Grown diff at n < 0.05		0.0128	0.0198	0.0130	
Group diff. at p < 0.01		0.0213	0.0330	0.0217	

Analysis of variance: F ratio = 0.84 Df = 3/ 16 F probability = 0.495 Note: a * indicates group mean is significantly different from control at level of significance shown.

			49
1		ω	42
ហ	ហ	ເກ	ഗ
1.806	1.806	1.824	1.761
0.050	0,054	0.023	0.085
	0.094	0.094	0.094
	0.123	0.123	0.123
1.10 Df =	3/ 16 F probabili	lty = 0.380	
Group Control 2 3 Number/group 1.806 1.824 Standard deviation 0.050 0.094 Group diff. at p < 0.05 Group diff. at p < 0.01 Analysis of variance: F ratio = 1.10	Group Group Control 2 5 5 5 1.806 1.824 1 806 1.824 1 806 1.824 1 806 1.824 1 806 1.824 1 806 1.824 1 806 1.824 1 806 1.824 1 806 1.824 1 806 1.824 1 806 1.824 1 806 1.824 1 806 1.824 1 806 1 807 1	Control 5 1.806 0.050 1.10 Df = 3/	Control 2 3 1.806 1.824 0.050 0.054 0.023 0.094 0.094 0.123 0.123

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Epididymides Controls from group: 1		Data homogeneous by Bartlett's test (Dunnett'	- - - - - - - - - - - - - - - - - -
Group Control	2	ω	4
Number/group 5	tri	ហ	(JT
Mean 1.0898	1.1072	1.0976	1.0682
•	0.0851	0.0871	0.0598
0.05	0.1155	0.1155	0.1155
Group diff. at p < 0.01	0.1510	0.1510	0.1510

TABLE 9.1 - Absolute organ weights $\langle g \rangle$ - Final sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Kidneys	Controls from group: 1	Data homogeneous	Data homogeneous by Bartlett's test (Dunnett'		
Group	Control	2	2	4	
Number/group	(J	ហ	ហ	ហ	
Mean,	2,145	2.140	2.358	2.087	
Standard deviation	0.087	0.091	0.173	0.220	
Group diff. at $p < 0.05$		0.251	0.251	0.251	
Group diff. at p < 0.01		0.329	0.329	0.329	
Analysis of variance: F ratio =	3.06	Df = 3/16 F probability = 0.058	lity = 0.058		

Note: a \star indicates group mean is significantly different from control at level of significance shown.	Note:	
 indicates group mean is significantly different from control at level of significance shown 	D	
group mean is significantly different from control at level of significance shown	* indicates	
mean is significantly different from control at level of significance shown	droup	
is significantly different from control at level of significance shown	mean	
significantly different from control at level of significance shown	Ω.	
different from control at level of significance shown	significantly	
from control at level of significance shown	different	
control at level of significance shown	from	
at level of significance shown	control	
level of significance shown	ct di	
of significance shown	Level	
significance shown	0	,
	significance show	

Organ: Liver	Controls from group: 1		mara nomogeneous by barttett's test (bunnett	לווזומרג א רפאר)
Group	Control	22	ω	
Number/group	ທ	ហ	ហ	თ
Mean	9.251	10.462	14.270	16.995
Standard deviation	0.638	0.799	0.837	1.345
roup diff. at p < 0.05		1.546	1.546*	1.546*
Group diff. at p < 0.01		2.021	2.021*	2.021*
Analysis of variance: F ratio = 70.90 Df = $3/16$ F probability = 0.000	atio = 70,90 Df =	1		

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

MALES

Organ: Spleen	Controls from group: 1	. 1 . id	Data homogeneous	Data homogeneous by Bartlett's test (Dunnett's	Dunnett's test)	
Group	Control	1	2	ω	4	
Number/group	ហ		ഗ്ദ	ഗ	ഗ	
Mean	0.8874		0.8012	0.8090	0.5482	
standard deviation	0.0717		0.1129	0.1089	0.1099	
Group diff at a < 0.05			0.1677	0.1677	0.1677*	
Group diff. at p < 0.01			0.2193	0.2193	0.2193*	
That was a fiveriance: Firstic = 10.39 Df = $3/16$ Figure bability = 0.001	ratio = 10.39 I)¥ # 3	/ 16 F probabil	ity = 0.001		

Analysis of variance: F ratio = 10.39 DF = 3/ 16 F probability = 0.001 Note: a * indicates group mean is significantly different from control at level of significance shown.

Ho1	ы	ω	44
n	я	л	л
u	C		
178	3.7782	3,7664	3.6210
භ	0.1372	0.2113	0.1819
	0.3103	0.3103	0.3103
	0		0 4080
	0.4059	0.4059	C. 4089
72 Df = 3	/ 16 F probabil	ity = 0.556	
	Control 5 3.7378 0.2163 0.72 D£ = 3	Erol 2 5 5 3.7782 378 0.1372 163 0.4059 0.4059	Df = 3/

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

Organ: Thymus	Controls from group: 1		Data homogeneous by Bartlett's test (Dunnett's	Ounnett's test)	
i	Control	2	2	4	
Number/group	C I	(J)	វោ	ហ	
Mean	0.5252	0.5508	0.5460	0.3096	
Standard deviation	0.0645	0.1063	0.0619	0.1004	
Group diff. at $p < 0.05$		0.1405	0.1405	0.1405*	
Group diff. at p < 0.01		0.1837	0.1837	0.1837*	

Analysis of variance: F ratio = 9.17 Df = 3/ 16 F probability = 0.001 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Thyroid Controls from group: 1	group: 1	Data inhomogeneous	Data inhomogeneous by Bartlett's test (Modified t test	Modified t test)
Group Control	P	2	ω	4
Number/group 5		ហ	(JT	(Jr
		0.0258	0.0268	0.0252
Standard deviation 0.0025		0.0029	0.0004	0.0024
		0.0048	0.0032	0.0043
Group diff. at p < 0.01		0.0081	0.0054	0.0072
Analysis of variance: Fratio = 0.62 Df = $3/$ 16 F probability = 0.616 Note: a * indicates group mean is significantly different from control at level of significance shown.	Df = 3 icantly diff	/ 16 F probabilit erent from control at	y = 0.616 level of significance	e shown.

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

PEMALES

Organ: Adrenals	Controls from group: 1	Data inhomogeneo	Data inhomogeneous by Bartlett's test (Modifie	(Modified t test)
Group	Group Control	2	2	4
Number/group	ហ	4.	ហ	ហ
Mean	0.0648	0.0590	0.0672	0.0550
Standard deviation	0.0013	0.0036	0.0112	0.0082
Group diff. at p < 0.05		0.0059	0.0140	0.0103
Group diff. at p < 0.01		0.0108	0.0233	0.0171

Analysis of variance: F ratio = 2.80 Df = 3/15 F probability = 0.075 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	Controls from group: 1		Data homogeneous by Bartlett's test (Dunnett	
Group	Control	2	ω	4
Number/group	ហ	4	ரு	ஶ
Mean	1.669	1.642	1.679	1.620
Standard deviation	0.064	0.037	0.042	0.062
Group diff. at p < 0.05		0.094	0.088	0.088
Group diff. at p < 0.01		0.123	0.116	0.116
Analysis of variance: F ratio = 1.25 Df = $3/15$ F probability = 0.328 Note: a * indicates group mean is significantly different from control at level of significance shown.	atio = 1.25 Df =	3/ 15 F probabil	lity = 0.328	

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Heart	Controls from group: 1		Data homogeneous by Bartlett's test (Dunnett's	unnett's test)	
Group	Control	2	2	4	
Number/group	மு	41,	ហ	ഗ	
Mean	0.858	0.832	0.835	0.759	
Standard deviation	0.076	0.107	0.032	0.102	
Group diff. at p < 0.05		0.145	0.137	0.137	
Group diff. at p < 0.01		0.190	0.179	0.179	
3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -) to		1 0 300		

Analysis of variance: F ratio = 1.34 Df = 3/15 F probability = 0.299 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Kidneys C	Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett	Data homogeneous	by Bartlett's test (I	
droup	Control	2	ιu	ţ.
Number/group	ហ	4	ហ	ហ
Mean	1.414	1.377	1.432	1.416
Standard deviation	0.112	0.116	0.058	0.097
proup diff. at p < 0.05		0.170	0.161	0.161
Group diff. at p < 0.01		0.224	0.211	0.211
Analysis of variance: Fratio = 0.25 Df = $3/15$ F probability = 0.860		3/ 15 F probabil	; t; I O 000	

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

Organ: Liver	Controls from group: 1		Data homogeneous by Bartlett's test (Dunnett's)unnett's test)	
droup	Control	2	3	4	
Number/group	ហ	4	ഗ	ហ	
Mean	5.865	5.942	6.518	8.540	
Standard deviation	0.407	0.410	0.359	0.438	
Group diff, at $p < 0.05$		0.708	0.667	0.667*	
Group diff. at p < 0.01		0.929	0.876	0.876*	
Analysis of variance: F ratio =	46,60	Df = 3/15 F probability = 0.000	lity = 0.000		

Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Ovaries C	Controls from group: 1	Data homogeneous	Data homogeneous by Bartlett's test (Dunnett'	Junnett's test)
Group	Control	2	ω	4
Number/group	S	4	ហ	G
Mean	0.1274	0.1140	0.1186	0.1168
Standard deviation	0,0153	0.0181	0.0159	0.0110
Group diff. at p < 0.05		0.0265	0.0249	0.0249
Group diff. at p < 0.01		0.0347	0.0328	0.0328
Analysis of variance: F ratio = 0.69 Df = $3/15$ F probability = 0.574 Note: a * indicates group mean is significantly different from control at level of significance shows	tio = 0.69 Df =			

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Spleen	Controls from group: 1				
Grond	Control	2	ω	4	
Number/group	ທ	4	ഗ	Ø	
Mean	0.6978	0.6058	0.5358	0.4474	
Standard deviation	0.0848	0.1240	0.0461	0.0487	
Group diff. at $p < 0.05$		0.1378	0.1299*	0.1299*	
Group diff. at p < 0.01		0.1809	0.1706	0.1706*	
		1			

Analysis of variance: F ratio = 9.03 Df = 3/15 F probability = 0.001Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Thymus	Controls from group: 1		Data homogeneous by Bartlett's test (Dunnett	(Dunnett's test)
group	Control	2	ω	4
Number/group	Ся	4	ហ	Ç
Mean	0.3754	0.3908	0.4076	0.3210
Standard deviation	0.0511	0.0663	0.0643	0.0215
roup diff, at p < 0.05		0,0927	0.0874	0.0874
Group diff. at p < 0.01		0.1217	0 11/7	

TABLE 9.1 - Absolute organ weights (g) - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Thyroid	Controls from group: 1		Data homogeneous by Bartlett's test (Dunnett's	Dunnett's test)
Group	Control	2	₩	\$ \$
Number/group	ហ	ats.	ហ	տ
Mean	0.0146	0.0160	0.0148	0.0148
Standard deviation	0.0029	8100.0	0.0019	0.0013
Group diff. at p < 0.05		0.0036	0.0034	0.0034
Group diff. at p < 0.01		0.0048	0.0045	0.0045
Analysis of variance: F	Analysis of variance: F ratio = 0.40 Df = 3/15 F probability = 0.757 Note: a * indicates group mean is significantly different from control at level of significance shown.	3/ 15 F probabi	.1ity = 0.757	•

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

Organ: Adrenals	Controls from group: 1		Data homogeneous by Bartlett's test (Dunnett's test)	
Group			Control 4	
Number/group		ហ	ហ	
Mean		0.0494	0.0456	
Standard deviation		0.0095	0.0101	
Group diff. at p < 0.05			0.0144	
Group diff. at p < 0.01		,	0.0209	
Prolive is of variance. Figure 0.27 of 0.7 of 0.7	ratio = 0.37 D4	 	ザ フィンプラブ・コイナン W コ ・ハカン	

Analysis of variance: F ratio = 0.37 Df = 1/8 F probability = 0.563 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	Controls from group: 1 Data homo	Data homogeneous by Bartlett's test (Dunnett's test)
group	Control	4
Number/group	ហ	(J)
Mean	1.773	1.661
Standard deviation	0.045	0.077
Group diff. at p < 0.05		0.093*
Group diff. at p < 0.01		0.135
Analysis of variance: F Note: a * indicates group	Analysis of variance: F ratio = 7.77 Df = $1/8$ F probability = 0.023 Note: a * indicates group mean is significantly different from control at level of significance shown	probability = 0.023

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

Organ: Epididymides	Controls from group: 1	rols from group: 1 Data homogeneous by Bartlett's test (Dunnett's	l (a
	Co	Control	
Number/group		UT	ហ
Mean	1.	. 1990	0.9824
Standard deviation	0.	0.1162	0.1777
Group diff. at p < 0.05			0.2197
Group diff. at p < 0.01			0.3197
Analysis of variance: F ratio =	ratio = 5.20 Df = 1/ 8	L/ 8 F probability = 0.050	

Note: a * indicates group mean is significantly different from control at level of significance shown.

Analysis of variance: F ra	Group diff. at p < 0.01	Group diff. at p < 0.05	Standard deviation	Mean	Number/group	Group	Organ: Heart
tio = 23.63 Df = ean is significantly							Controls from group: 1
Analysis of variance: Fratio = 23.63 Df = $1/8$ F probability = 0.001 Note: a * indicates group mean is significantly different from control at level of significance shown.			0.048	1.217	G	Control	Data homogeneous by
significance shown.	0.222*	0.152*	0.139	0.897	ហ	.4.	Bartlett's test (Dunnett's test)

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

MALES

Group Number/group	Organ: Kidneys
Control 5	Organ: Kidneys Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's
A. 13	Data homogeneous by Bartlett's test (Dunnett's test)

2.152 0.178

2.089 0.295 0.357 0.519

Analysis of variance: F ratio = 0.17 Df = 1/8 F probability = 0.694 Note: a * indicates group mean is significantly different from control at level of significance shown.

Mean Standard deviation Group diff. at p < 0.05 Group diff. at p < 0.01

Organ: Liver	ols from	by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	СЛ	(J)
Mean	9.188	17,336
Standard deviation	0.931	1.733
Group diff. at p < 0.05		2.035*
Group diff. at p < 0.01		2.962*
Analysis of variance: F ratio = 85.76 Df = 1/8 F probability = 0.000 Note: a * indicates group mean is significantly different from control at level of significance shows the state of th	Analysis of variance: Fratio = 85.76 Df = $1/8$ Fprobability = 0.000	ty = 0.000

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

Organ: Spleen	Controls from group: 1	Data homogeneous by Bartlett's test (Dunnett's	ct's test (Dunnett's test)
Group		Control	-
Number/group		S	ഗ
Mean	0.5	0.8638	0,5860
Standard deviation	0	1165	0.0570
Group diff. at $p < 0.05$			0.1342*
Group diff. at p < 0.01			0.1953*
Analysis of variance: F ratio = Note: a * indicates group mean is	Fratio = 22.94 Df = 1.00 mean is significantly diffe	Analysis of variance: Fratio = 22.94 Df = $1/8$ F probability = 0.001 Note: a * indicates group mean is significantly different from control at level of significance shown	l f significance shown.

Organ: Testes	Controls from group: 1 Data homogeneous by	Data homogeneous by Bartlett's test (Dunnett's test)
droup	Control	
Number/group	ഗ	ហ
Mean	3.7084	3.4254
Standard deviation	0.1403	0.3016
Group diff. at p < 0.05		0.3441
Group diff. at p < 0.01		0.5008
Analysis of variance: F ra	Analysis of variance: F ratio = 3.62 Df = $1/8$ F probability = 0.091 Note: a * indicates group mean is significantly different from control at level of significance shown.	$\gamma = 0.091$ level of significance shown.

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

Analysis of variance: F ratio = Note: a * indicates group mean is	ပ်ပာမှိ နာ	
Analysis of variance: F ratio = 5.47 Df = $1/8$ F probability = 0.046 Note: a * indicates group mean is significantly different from control at level of significance shown.	Control 5 0.4750 0.0472	
tty = 0.046 at level of significance shown.	trol 4 5 5 750 0.3146 472 0.1586* 0.2308	Data homogeneous by Bartlett's test (Dunnett's test)

Group Control 4 5 5 5 5 5 5 5 5 5	Organ: Thyroid	Controls from group: 1 Data homoge	Data homogeneous by Bartlett's test (Dunnett's test)
			0.0220 0.0060 0.0071 0.0103

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

Organ: Adrenals	Controls from group: 1		Data homogeneous by Bartlett's test (Dunnett's test)
dnoze		Control	ontrol 4
Number/group		ഗ	ហ
Mean		0.0552	0.0516
Standard deviation		0.0090	0.0047
Group diff. at p < 0.05			0.0105
Group diff. at $p < 0.01$			0.0154

Analysis of variance: F ratio = 0.62 Df = 1/8 F probability = 0.457 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	from group: 1	Data homogeneous by Bartlett's test (Dunnett's test)
Group	Control	4
Number/group	(Jī	វេក
Mean	1.660	1.642
Standard deviation	0.074	0.059
Group diff. at p < 0.05		0.098
Group diff. at p < 0.01		0.143
Analysis of variance: F	Analysis of variance: F ratio = 0.18 Df = $1/8$ F probability = 0.687 Note: a * indicates group mean is significantly different from control at level of	Analysis of variance: F ratio = 0.18 Df = $1/8$ F probability = 0.687 Note: a * indicates group mean is significantly different from control at level of significance shown.

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

FEMALES

Organ: Heart		Data homogeneous by Bartlett's test (Dunnett's test))unnett's test)
group	3	Control 4	
Number/group	n	5	
Mean	808.0	0.734	34
Standard deviation	0.037		3.2
Group diff. at p < 0.05		*0.00.0	*00
Group diff. at $p < 0.01$		*ELO.0	*60
Analysis of variance: F : Note: a * indicates group		atio = 11.55 Df = $1/$ 8 F probability = 0.009 mean is significantly different from control at level of significance shown.	ice shown.

tt's test (Dunnett's test)	ヴ '
Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	Control
Controls from group: 1	
Organ: Kidneys	dnoig

Group Control	ហ	1.399	0.082	0.092	0.134
Control	ம	1.359	0.034		
Group	Number/group	Mean	Standard deviation	Group diff. at p < 0.05	Group diff. at p < 0.01

Analysis of variance: F ratio = 0.98 Df = 1/8 F probability = 0.353

Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

н	L)	Data homogeneous by Bartlett's test (Dunnett's test)
dnoxe]	Control
Number/group	மி	ıv
Mean	5.413	8.420
Standard deviation	0.167	0.144
Group diff. at p < 0.05		0.228*
Group diff. at $p < 0.01$		0.332*
Analysis of variance: F ratio Note: a * indicates group mean	ratio = 929.52 Df = $1/$ 8 F probability = 0.000 mean is significantly different from control at level of	= 929.52 Df = $1/8$ F probability = 0.000 is significantly different from control at level of significance shown.

s S	Controls from group:	Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	test (Dunnett's test)
dnoug		Control 4	4
Number/group		ហ	ı,
Mean		0.1162	0.1046
Standard deviation		0.0063	0.0158
Group diff. at p < 0.05			0.0176
Group diff. at p < 0.01			0.0256
Analysis of variance: F ratio Note: a * indicates group mean	ratio = 2.32 Df = 0.32 mean is significantly d	Analysis of variance: F ratio = 2.32 Df = $1/8$ F probability = 0.164 Note: a * indicates group mean is significantly different from control at level of significance shown.	gnificance shown.

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

	rols from group: l	Data homogeneous by Bartlett's test (Dunnett's test)
Group	90	ntrol 4
Number/group	īÙ	S
Mean	0.6078	0.5278
Standard deviation	0.0684	0.0244
diff. at $p < 0.05$		0.0751*
Group diff. at p < 0.01		0.1093

Data homogeneous by Bartlett's test (Dunnett's test)	.3382 .0443 .1392	0.420 rel of significance shown.
	Control 5 0.3898 0.1270	0.74 Df = $1/$ 8 F probability = 0.420 ignificantly different from control at level of
Organ: Thymus Controls from group: 1	Group Number/group Mean Standard deviation Group diff. at p < 0.05 Group diff. at p < 0.01	Analysis of variance: F ratio = 0.74 Df = $1/8$ F probability = 0.420 Note: a * indicates group mean is significantly different from control at level of significance shown.

TABLE 9.2 - Absolute organ weights (g) - Recovery sacrifice - Group mean data

Organ: Thyroid	Controls from group: 1 Data homogeneous by Bartlett's test)	
	Control	
Number/group	ហ	
Mean	0.0182	
Standard deviation	0.0054	
Group diff. at $p < 0.05$	9.0070	
Group diff. at $p < 0.01$	0.0111	
Analysis of variance: F ra Note: a * indicates group m	nalysis of variance: F ratio = 0.18 Df = $1/8$ F probability = 0.683 fote: a * indicates group mean is significantly different from control at level of significance shown.	nown.

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.1 - Relative organ weights - Final sacrifice - Group mean data

MALES

<pre>1 Data inhomogeneous by Bartlett's test (Modified t test)</pre>	Control 2 3 4	so so	0.0146	0.0029 0.0011 0.0033 0.0008	0.0055	1,000 0
		ស	0.0140	0.0029		
Organ: Adrenals	dnos	Number/group	Mean	Standard deviation	Group diff. at p < 0.05	1000 11 11 1000

Analysis of variance: F ratio = 0.34 Df = 3/ 16 F probability = 0.797 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	Organ: Brain Controls from group: 1 Data inhomogeneous by Bartlett's test (Modified t test)	Data inhomogeneo	Data inhomogeneous by Bartlett's test (Modified t test)	(Modified t test)
dnozg	Control	2	m	4
Number/group	ហ	ம	សា	மி
Mean	0.521	0.541	0.535	0.640
Standard deviation	0.022	0.009	0.015	0.071
Group diff. at p < 0.05		0.030	0.034	\$ COO.O
Group diff. at p < 0.01		0.050	0.056	0.154

Analysis of variance: F ratio = 10.22 Df = 3/16 F probability = 0.001Note: a * indicates group mean is significantly different from control at level of significance shown. ° = expressed as % organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.1 - Relative organ weights° - Final sacrifice - Group mean data

MALES

1	
1	
1	
1	
1	
!	
i	
1	
1	
i	
-	
!	
ĺ	
-	
į	
1	
i	
1	
i	
1	
1	
i	
1	
1	
,	

Organ: Epididymides	Controls from group:]	Data homogeneous b	Data homogeneous by Bartlett's test (Dunnett's test)	Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	
Group	Control	2	m	Þ	
Number/group	ស	ĸ	S	ហ	
Mean	0.3144	0.3318	0.3216	0.3890	
Standard deviation	0.0154	0.0235	0.0211	0.0538	
Group diff. at p < 0.05		0.0526	0.0526	0.0526*	
Group diff. at $p < 0.01$		0.0688	0.0688	0.0688*	

Analysis of variance: F ratio = 5.60 Df = 3/16 F probability = 0.008 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Heart	Controls from group: 1	Data homogeneous	Data homogeneous by Bartlett's test (Dunnett's test)	Data homogeneous by Bartlett's test (Dunnett's test)
	Control	2	8	5
Number/group	ស	S)	ιΩ	'n
Mean	0.356	0.350	0.362	0.331
Standard deviation	0.028	0.022	0.018	0.022
Group diff. at p < 0.05		0.037	0.037	0.037
Group diff. at $p < 0.01$		0.049	0.049	0.049

Analysis of variance: F ratio = 1.70 Df = 3/ 16 F probability = 0.206 Note: a * indicates group mean is significantly different from control at level of significance shown. ° = expressed as \$ organ to body weight ratio

TABLE 10.1 - Relative organ weights - Final sacrifice - Group mean data

MALES

Data homogeneous by Bartlett's test (Dunnett's test)
Controls from group: 1
Organ: Kidneys

Group	Control	2	m	\$7
Number/group	ம	ഗ	ហ	ŧΩ
Mean	0.618	0.641	0.691	0.753
Standard deviation	0.016	0.023	0.034	0.051
Group diff. at p < 0.05		0.055	0.055*	0.055*
Group diff. at $p < 0.01$		0.072	0.072*	0.072*

Analysis of variance: F ratio = 15.81 Df = 3/ 16 F probability = 0.000Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Liver	Organ: Liver Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	Data homogeneous	Data homogeneous by Bartlett's test (Dunnett's test)	Junnett's test)
dnozg	Control	73	m	4
Number/group	ស	ഗ	ഗ	ហ
Mean	2.665	3.130	4.182	6.138
Standard deviation	0.132	0.109	0.194	0.141
Group diff. at p < 0.05		0.242*	0.242*	0.242*
Group diff. at p < 0.01		0.316*	0.316*	0.316*

Analysis of variance: F ratio = 546.08 Df = 3/ 16 F probability = 0.000 Note: a * indicates group mean is significantly different from control at level of significance shown. $^{\circ}$ = expressed as $^{\circ}$ organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.1 - Relative organ weights" - Final sacrifice - Group mean data

STUDY NO.:

MALES

Data homogeneous by Bartlett's test (Dunnett's test) Controls from group: 1 Organ: Spleen

0.1968 0.0269 0.0406* 0.0531* 0.2367 0.0258 0.0406 0.0531 2 0.2392 0.0246 0.0406 0.0531 Control 5 0.2559 0.0214 Group diff. at p < 0.05 Group diff. at p < 0.01Group Standard deviation Number/group

Analysis of variance: F ratio = 5.12 Df = 3/ 16 F probability = 0.011 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Testes	Organ: Testes Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	Data homogeneous	Data homogeneous by Bartlett's test (Dunnett's test)	(Dunnett's test)
Group	Control	2	3	
Number/group	ഹ	ιŊ	ហ	ഗ
Mean	1.0790	1.1324	1.1047	1.3140
Standard deviation	0.0864	0.0382	0.0695	0.1273
Group diff. at p < 0.05		0.1419	0.1419	0.1419*
Group diff. at p < 0.01		0.1856	0.1856	0.1856*

Analysis of variance: F ratio = 7.58 Df = 3/16 F probability = 0.002Note: a * indicates group mean is significantly different from control at level of significance shown. ° = expressed as % organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.1 - Relative organ weights - Final sacrifice - Group mean data

MALES

Data homogeneous by Bartlett's test (Dunnett's test)
Controls from group: 1 Da
Organ: Thymus

dnozg	Control	7	m	4
Number/group	ம	ιŊ	ស	ഹ
Mean	0.1515	0.1649	0.1599	0.1102
Standard deviation	0.0193	0.0303	0.0156	0.0289
Group diff. at p < 0.05		0.0399	0.0399	*66°0.0
Group diff. at p < 0.01		0.0522	0.0522	0.0522

Analysis of variance: F ratio = 5.24 Df = 3/ 16 F probability = 0.010 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Thyroid Controls from group: 1 Data inhomogeneous by Bartlett's test (Modified t test)	Controls from group:	1 Data inhomogeneou	Data inhomogeneous by Bartlett's test (Modified t test)	(Modified t test)	
dnozg	Control	2	e	7	
Number/group	ហ	ល	ហ	ĸ	
Mean	0.0072	0.0078	0.0079	0.0091	
Standard deviation	0.0009	0.0011	0.0002	0.0006	
Group diff. at p < 0.05		0.0018	0.0011	0.0013*	
Group diff. at p < 0.01		0.0030	0.0019	0.0022	

Analysis of variance: F ratio = 5.16 Df = 3/16 F probability = 0.011 Note: a * indicates group mean is significantly different from control at level of significance shown. $^{\circ}$ = expressed as \$ organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.1 - Relative organ weights° - Final sacrifice - Group mean data

SIUDY NO.:

FEMALES

Bartlett's test (Modified t test)
Data inhomogeneous by
Controls from group: 1
Organ: Adrenals

	Control	2	e	4
Number/group	ស	4	ம	ហ
Mean	0.0293	0.0267	0.0317	0.0280
Standard deviation	0.0012	0.000	0.0058	0.0039
Group diff. at p < 0.05		0.0021*	0.0074	0.0051
Group diff. at p < 0.01		0.0036	0.0124	0.0085

Analysis of variance: F ratio = 1.54 Df = 3/15 F probability = 0.244Note: a * indicates group mean is significantly different from control at level of significance shown.

Data homogeneous by Bartlett's test (Dunnett's test) Controls from group: 1 Organ: Brain

4 r)	0.826	0.013	0.071	0.094
നഗ	0.791	0.051	0.071	0.094
C/ 4	0.744	0.044	0.076	0.099
Control 5	0.755	0.053		
Group Mumber/group	Mean	Standard deviation	Group diff. at p < 0.05	Group diff. at $p < 0.01$

Analysis of variance: F ratio = 3.50 Df = 3/15 F probability = 0.042Note: a * indicates group mean is significantly different from control at level of significance shown. ° = expressed as \$ organ to body weight ratio

44-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.1 - Relative organ weights° - Final sacrifice - Group mean data

STUDY NO.:

FEMALES

Data homogeneous by Bartlett's test (Dunnett's test) Controls from group: 1 Organ: Heart

					1
Group	Control	2	m	4	
Number/group	ហ	4	ហ	S	
Mean	0.388	0.376	0.394	0.386	
Standard deviation	0.037	0.037	0.033	0.038	
Group diff. at p < 0.05		0.063	0.060	0.060	
Group diff. at p < 0.01		0.083	0.078	0.078	

Analysis of variance: F ratio = 0.19 Df = 3/15 F probability = 0.899 Note: a * indicates group mean is significantly different from control at level of significance shown.

7
"
 ,
 1024400
 Group
6 F F 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

7	ιΩ	0.723	0.062	0.092	0.153
ო	z,	0.673	600.0	0.051	0.086
23	4.	0.622	0.040	0.081	0.143
Control	ιΩ	0.638	0.040		
dnoz9	Number/group	Mean	Standard deviation	Group diff. at p < 0.05	Group diff. at p < 0.01

Analysis of variance: F ratio = 5.21 Df = 3/ 15 F probability = 0.012 Note: a * indicates group mean is significantly different from control at level of significance shown. $^{\circ}$ = expressed as \$ organ to body weight ratio

TABLE 10.1 - Relative organ weights? - Final sacrifice - Group mean data

SIUDY NO.:

FEMALES

Organ: Liver	controls irom group:	550000000000000000000000000000000000000		(000)	
dnoag			2 3	4	
Number/group	ស	4	ம	ιΛ	
Mean	2.646	2.686	3.065	4.360	
Standard deviation	0.097	0.088	0.143	0.275	
Group diff. at p < 0.05		0.301	0.284*	0.284*	
Group diff. at p < 0.01		0.396	0.373*	0.373*	

Organ: Ovaries	Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	Data homogeneous	Data homogeneous by Bartlett's test (Dunnett's test)	(Dunnett's test)	
group	Control	2	ന	4	į
Number/group	ស	7	ro.	ιΩ	
Mean	0.0574	0.0515	0.0560	0.0596	
Standard deviation	0.0049	0.0072	0.0091	0.0062	
Group diff. at p < 0.05		0.0123	0.0116	0.0116	
Group diff. at p < 0.01		0.0161	0.0152	0.0152	

Analysis of variance: F ratio = 1.05 Df = 3/ 15 F probability = 0.401 Note: a * indicates group mean is significantly different from control at level of significance shown. = expressed as % organ to body weight ratio

TABLE 10.1 - Relative organ weights - Final sacrifice - Group mean data

FEMALES

Organ: Spleen	Controls from group: 1	Data homogeneous	Data homogeneous by Bartlett's test (Dunnett's test)	Ounnett's test)	
Group	Group Control 2 3 4	2	m	4	
Number/group	Ŋ	ফ	വ	மி	
Mean	0.3158	0.2729	0.2523	0.2278	
Standard deviation	0.0431	0.0467	0.0259	0.0178	
Group diff. at p < 0.05		0.0605	0.0571*	0.0571*	
Group diff. at p < 0.01		0.0795	0.0749	0.0749*	

Analysis of variance: F ratio = 5.80 Df = 3/ 15 F probability = 0.008 Note: a * indicates group mean is significantly different from control at level of significance shown.

Data homogeneous by Bartlett's test (Dunnett's test)	Group Control 2 3 4 Number/group 5 5 5 5 Mean 0.1690 0.1776 0.1923 0.1641 Standard deviation 0.0166 0.0354 0.0357 0.0160 Group diff. at p < 0.05 0.0474 0.0447 0.0447 Group diff. at p < 0.01 0.0522 0.0587 0.0587
Controls from group: 1 Data homogeneo	Control 2 5 4 0.1690 0.1776 0.0166 0.0354 0.0474
Organ: Thymus	Group Number/group Mean Standard deviation Group diff. at p < 0.05 Group diff. at p < 0.05

Analysis of variance: F ratio = 1.04 Df = 3/ 15 F probability = 0.403Note: a * indicates group mean is significantly different from control at level of significance shown. ° = expressed as \$ organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.1 - Relative organ weights° - Final sacrifice - Group mean data

Organ: Thyroid	Controls from group: 1	Data homogeneous	Data homogeneous by Bartlett's test (Dunnett's test)		
dnos	Control	2	· · · · · · · · · · · · · · · · · · ·	τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ	
Number/group	ល	4	'n	ιΩ	
Mean	0.0066	0.0072	0.0070	0.0076	
Standard deviation	0.0013	0.0008	0.0010	0.0008	
Group diff. at p < 0.05		0.0018	0.0017	0.0017	
Group diff. at $p < 0.01$		0.0024	0.0022	0.0022	
Analysis of variance: F r Note: a * indicates group ° = expressed as % organ t	Analysis of variance: F ratio = 0.78 Df = $3/$ 15 F probability = 0.525 Note: a * indicates group mean is significantly different from control at level of significance shown. $^{\circ}$ = expressed as $\$$ organ to body weight ratio	3/ 15 F probabili Serent from control a	ty = 0.525 t level of significan	ace shown.	

TABLE 10.2 - Relative organ weights" - Recovery sacrifice - Group mean data

MALES

Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	Control 4	LO LO	0.0135 0.0166	0.0022 0.0031	600.0	C300 0
Organ: Adrenals Controls from gro	dnox9	Number/group	Mean	Standard deviation	Group diff. at $p < 0.05$	01/01/1 11/4 11/4 11/4 11/4 11/4 11/4 11

Analysis of variance: F ratio = 3.39 Df = 1/8 F probability = 0.101Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	Controls from group: 1	Organ: Brain Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	t (Dunnett's test)
Group		Control	ት
Number/group		ഹ	ហ
Mean		0.487	0.613
Standard deviation		0.027	0.068
Group diff. at p < 0.05			0.076*
Group diff. at $p < 0.01$			0.111*

Analysis of variance: F ratio = 14.68 Df = 1/8 F probability = 0.005Note: a * indicates group mean is significantly different from control at level of significance shown. * = expressed as % organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.2 - Relative organ weights" - Recovery sacrifice - Group mean data

MALES

Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	4 5 0.3584 0.0527 0.0601
1 Data homogeneous b	Control 5 0.3287 0.0245
Controls from group: 1	
Organ: Epididymides	Group Number/group Mean Standard deviation Group diff. at p < 0.05 Group diff. at p < 0.01

Analysis of variance: F ratio = 1.31 Df = 1/8 F probability = 0.286Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Heart	Controls from group:	Organ: Heart Controls from group: l Data homogeneous by Bartlett's test (Dunnett's test)	sst (Dunnett's test)
dnos		Control	゙゙゙゙゙゙゙゙゙゙゙
Number/group		w	ro.
Mean		0.334	0.326
Standard deviation		0.013	0.015
Group diff. at p < 0.05			0.021
Group diff. at $p < 0.01$			0.030

Analysis of variance: F ratio = 0.73 Df = 1/8 F probability = 0.421 Note: a * indicates group mean is significantly different from control at level of significance shown. $^{\circ}$ = expressed as $^{\circ}$ organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.2 - Relative organ weights - Recovery sacrifice - Group mean data

MALES

Organ: Kidneys	Controls from group: 1	Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	s test (Dunnett's test)
Group	Ŭ	Control	ヤ
		ហ	ம்
		0.590	0.762
Standard deviation		0.023	0.047
Group diff. at p < 0.05			0.054*
0.01			.078*

Analysis of variance: F ratio = 55.33 Df = 1/8 F probability = 0.000 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Liver	Controls from group:	Organ: Liver Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	s test (Dunnett's test)
dnox5		Control	4
Number/group		rs.	5
Mean		2.515	6.348
Standard deviation		0.148	0.248
Group diff. at p < 0.05			*@@Z.O
Group diff. at p < 0.01			0.435*

Analysis of variance: F ratio = 878.42 Df = 1/8 F probability = 0.000Note: a * indicates group mean is significantly different from control at level of significance shown. • = expressed as \$ organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.2 - Relative organ weights" - Recovery sacrifice - Group mean data

MALES

Organ: Spleen	1 Data homogeneous 1	Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	
Group	Control	4	
Number/group	ry.	5	
Mean	0.2363	0.2148	
Standard deviation	0.0228	0.0119	
Group diff. at p < 0.05		0.0266	
Group diff. at p < 0.01		0.0387	

Analysis of variance: F ratio = 3.50 Df = 1/8 F probability = 0.096Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Testes	Controls from group:	Organ: Testes Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	test (Dunnett's test)
dnox5		Control	4
Number/group		r.	ın
Mean		1.0199	1.2583
Standard deviation		0.0815	0,1112
Group diff. at p < 0.05	ഗ		0.1426*
Group diff. at p < 0.01	Т		0,2075*

Analysis of variance: F ratio = 14.95 Df = 1/ 8 F probability = 0.005 Note: a * indicates group mean is significantly different from control at level of significance shown. $^{\circ}$ = expressed as \$ organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.2 - Relative organ weights" - Recovery sacrifice - Group mean data

STUDY NO.:

MALES

	Controls from group:	.: 1 Data homogeneous by Bartlett's test (Dunnett's test)	test (Dunnett's test)
Group		up Control	4
Number/group		υĵ	r.
Mean		0.1308	0.1119
Standard deviation		0.0178	0.0465
Group diff. at p < 0.05			0.0515
Group diff. at p < 0.01			0.0749

Analysis of variance: F ratio = 0.72 Df = 1/8 F probability = 0.425Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Thyroid	Controls from group: 1	1 Data inhomogeneous by Bar	Controls from group: 1 Data inhomogeneous by Bartlett's test (Modified t test)
Group		Control	4
Number/group		ĸ	សេ
Mean		0.0054	0.0081
Standard deviation		0.0008	0.0024
Group diff. at p < 0.05			0.0031
Group diff. at p < 0.01			0.0052

Analysis of variance: F ratio = 5.76 Df = 1/ 8 F probability = 0.042 Note: a * indicates group mean is significantly different from control at level of significance shown. $^{\circ}$ = expressed as \$ organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.2 - Relative organ weights° - Recovery sacrifice - Group mean data

FEMALES

; test)	
Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	4 5 0.0254 0.0019 0.0046
up: 1 Data homogene	Control 5 0.0248 0.0041
- 1	ν, ⊷
Organ: Adrenals	Group Number/group Mean Standard deviation Group diff. at p < 0.05 Group diff. at p < 0.05

Analysis of variance: F ratio = 0.10 Df = 1/ 8 F probability = 0.752 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Brain	Controls from group: 1	Organ: Brain Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	(Dunnett's test)
dnox9		Control	4
Number/group		ហ	ry.
Mean		0.746	0.812
Standard deviation		0.041	0.049
Group diff. at p < 0.05		0	0.066
Group diff. at p < 0.01		0	7.097

Analysis of variance: F ratio \approx 5.15 Df = 1/8 F probability = 0.051 Note: a * indicates group mean is significantly different from control at level of significance shown. $^{\circ}$ = expressed as \$ organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.2 - Relative organ weights" - Recovery sacrifice - Group mean data

FEMALES

Ounnett's test)
Data homogeneous by Bartlett's test (Dunnett
Controls from group: 1 Dai
Organ: Heart

Group Group 4	Group Number/group Mean Mean Standard deviation Group diff. at p < 0.05
-------------------	---

Analysis of variance: F ratio = 0.00 Df = 1/8 F probability = 0.909Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Kidneys Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	Control 4	ហ	0.611 0.691	0.024 0.046	0.054*	¥0,00
Organ: Kidneys Controls from group: 1	Group	Number/group		Standard deviation 0	Group diff. at p < 0.05	Group diff. at p < 0.01

Analysis of variance: F ratio = 11.66 Df = 1/ 8 F probability = 0.009 Note: a * indicates group mean is significantly different from control at level of significance shown. $^{\circ}$ = expressed as % organ to body weight ratio

TABLE 10.2 - Relative organ weights° - Recovery sacrifice - Group mean data

FEMALES

Controls from group: 1 Data inhomogeneous by Bartlett's test (Modified t test)	
Д	
7	
Controls from group:	
Organ: Liver	

ヴ	r.	4.163	0.250	0.321*	*2m2.0
Control	r.	2.433	0.065		
Group	Number/group	Mean	Standard deviation	Group diff. at p < 0.05	Group diff. at p < 0.01

Analysis of variance: F ratio = 223.95 Df = 1/ 8 F probability = 0.000 Note: a * indicates group mean is significantly different from control at level of significance shown.

Organ: Ovaries	Controls from group:	Organ: Ovaries Controls from group: 1 Data homogeneous by Bartlett's test (Dunnett's test)	it (Dunnett's test)
dnoug		Control	4
Number/group		ហ	S
Mean		0.0523	.0516
Standard deviation		0.0032	.0073
Group diff. at p < 0.05			1.0082
Group diff. at p < 0.01).0120

Analysis of variance: F ratio = 0.04 Df = 1/8 F probability = 0.832 Note: a * indicates group mean is significantly different from control at level of significance shown. $^{\circ}$ = expressed as $^{\circ}$ organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.2 - Relative organ weights - Recovery sacrifice - Group mean data

FEMALES

	Controls from group: 1	Data homogeneous by Bartlett's test (Dunnett's test)	
Group	; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Control 4	
Number/group		ιŊ	£
Mean	0	.2730	0,2608
Standard deviation	0	0.0280	0.0153
Group diff. at p < 0.05			0.0330
Group diff. at p < 0.01			0.0480

Organ: Thymus	Controls from group: 1	1 Data homogeneous by Bartlett's test (Dunnett's test)	s test (Dunnett's test)
Group Number/group Mean Standard deviation		Group Group 4 5 5 5 5 5 5 5 5 5	4 5 0.1665 0.0163
Group diff. at p < 0.05	0		0.0348 0.0798

Analysis of variance: F ratio = 0.10 Df = 1/ 8 F probability = 0.751Note: a * indicates group mean is significantly different from control at level of significance shown. ° = expressed as % organ to body weight ratio

#4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 10.2 - Relative organ weights - Recovery sacrifice - Group mean data

STUDY NO.:

FEMALES

Data homogeneous by Bartlett's test (Dunnett's test) Analysis of variance: F ratio = 1.07 Df = 1/8 F probability = 0.333 Note: a * indicates group mean is significantly different from control at level of significance shown. $^{\circ}$ = expressed as $^{\circ}$ organ to body weight ratio 4 5 0.0097 0.0025 0.0035 Control 0.0081 Controls from group: 1 Standard deviation Group diff. at p < 0.05 Group diff. at p < 0.01Group Number/group Mean Organ: Thyroid

TABLE 11.1 - Macroscopic observations - Unscheduled deaths - Group incidence

Females	ω +		F	1	ਜ ਜ	1.1	ц
i	Group:	:droab ur zacumu	Liver Abnormal area(s)	Lungs Abnormal colour	Thymus Abnormal area(s)	Uterus Abnormal size	Abdominal cavity Abnormal contents

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 11.2 - Macroscopic observations - Final sacrifice - Group incidence

	ļ	Males	1		_	Fел	ales	
Group:	↔	7	ო	4	_		2 3	The state of the s
Number in group:	ıΩ	ហ	ស	ഹ	<u>_</u>			in.
	0	0	0	m		0	0	0
Ileum Abnormal contents	0	0	0	0		0	0	0
Jejunum Abnormal contents	⊣	0	0	0		0	0	0
Kidneys Abnormal area(s)	00	00	⊣ 0	00		0.0	00	00
Liver Abnormal area(s)	4000	0000	HH00	ひるなる		0000		0 1 1 0
Lungs Abnormal area(s)	п 0	00	00	0 +		00	 H 0	0
Ovaries Abnormal size						0	-	
Seminal vesicles Abnormal colour	0	0	0	7				
Spleen Abnormal shape	0	0	H	0		0	-	0

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 11.2 - Macroscopic observations - Final sacrifice - Group incidence

SIUDY NO.:

	. WE THE SEE THE WEST WIN WIN THE SEE WHI WIN THE SEE	Ž I I	1 1 2	 		 	1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H	ı i	
Gz Number in gr	Group: 1		22.5	നഹ	5.4	13	2 4		5 5
Stomach Abnormal area(s)		1 	 	 	01	00	00	 00 	0
Thymus Abnormal area(s) Abnormal colour Abnormal size		000	∺00	H O O	000	010	000	нн о	000
Uterus Abnormal size	: : : : : : : :					00	00	⊢ 1 ←1	00
Head Staining	:	0	Q	0		0	0	н	0
Skin Staining	:	٥	0	0	0	0	0	r-i	1
Tail Abnormal area(s)	:	0	-	0	0	0	0	0	0
Whole animal No abnormalities detected	:	m	m	₽	0	Н	4	₩.	m

TABLE 11.3 - Macroscopic observations - Recovery sacrifice - Group incidence

1 0	4a rù	0	0	н	00	H O O O	
Females	ΗŊ	0	H	73	00	040%	0
1							
	Δη	г	0	0	44	0010	H
Males	កស	r-f	ᆏ	Н	00	000m	0
	Group: Number in group:	Cervical nodes Abnormal size	<pre>Ileum Abnormal contents</pre>	Jejunum Abnormal contents	Kidneys Abnormal area(s)Pelvic dilatation	Liver Abnormal area(s) Abnormal colour Abnormal shape Abnormal size	Mesenteric nodes Abnormal colour

TABLE 11.3 - Macroscopic observations - Recovery sacrifice - Group incidence

Gr Number in gr	SOTEW III	i i	1	Еела тев	es
Number in gr	conp: 1	4	_		7
	coup: 5	ις	-	ഹ	· Ω
Seminal vesicles Abnormal colour	0	2			
Spleen Abnormal shape	r+ •	0		0	0
Stomach Abnormal contents		H		ч	2
Thymus Abnormal area(s) Abnormal size	::	0 0		00	2 1 1
Uterus Abnormal size	: :			00	1 1
Head Abnormal area(s)	. :	H H		00	0 %
Skin Staining	•	0		2	0
Whole animal No abnormalities detected		↔		ч	0

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 12.1 - Microscopic observations - Main phase - Group incidence

\		-	1		1111111	11111111111	1			
		4	r.	E E	st.	f f	T T T	ł		
	M	rd i	S.	· .	_	1		e H	-	
Dosage group: Tissues With Diagnoses No. in group:	Ctls 5	W 10	സഹ	4 የህ		Ctls 5	ω. Υ	സ	4 N	
Cervical nodes	 GO	0	00	25			*.0	00	20	
HeartNumber examined:	R) H	0 0	00	R 0		s H	* o	00	ĸΟ	
KidneysNumber examined: NEPHROPATHY INFLAMMATORY CELL INFILTRATION	राकम	000	0 11 10	ss က ဝ		ស្កាកា	*.00	000	45 H O	
Liver	ທທທ໐໐໐໐	N N N 4 0 0 0	ស ហ ហ ហ ប 🗕 O O			ທຸທຸສ໐໐໐໐	ÿ ψ 4 0 0 0 μ	N N N O O O O	იოოოიიი	
LungsNumber examined: INFLAMMATORY CELL FOCI AGGREGATIONS OF ALVEOLAR MACROPHAGES PERIBRONCHIAL LYMPHOID HYPERPLASIA VASCULAR MINERALIZATION ALVEOLAR HAEMORRHAGE FRAGMENT/S OF BONE	т 4 о И о И о	000000	ಬ೯೦೦೨೭೭	22440440		N 4 0 0 H 0 0	*************	50 4 0 0 0 0 0 0	ちょくりりくり	
Ovaries						юH	* 0	H 0	ъч	
PituitaryNumber examined: DEVELPMENTAL CYST(S)	ıνο	00	00	\$ ∺		ŭΗ	* 0	00	νο	
ProstateNumber examined: MIXED INFLAMMATORY CELL INFILTRATION	ro Cl	00	00	ഗ ഗ						
Seminal vesicles	50	00	00	ഹന]				-

^{*} Includes one animal which was found dead on day 23 of the study.

TABLE 12.1 - Microscopic observations - Main phase - Group incidence

Controls from group(s): 1	1	,	Andrews in the second s		A f f e	40	מטי	i i	
Dosage group: Tissues With Diagnoses No. in group:	Ctls 5	2 5	നഗ	4 የህ	Ctls 5	° *°	ო w *	Δı ſÙ	
StomachNumber examined: GLANDULAR DILATATION INFLAMMATORY CELL INFILTRATION	.,, СС	000	1 0 0	200		00 1,4	000 *	1000 	‡ † † † † !
ThymusNumber examined: ATROPHY CONGESTION/HAEMORRHAGE	NOO	N 0 0	N 0 0	v , m o	иоо	*0°	* *	4) H O	
ThyroidNumber examined: THYRO-GLOSSAL DUCT REMNANT	ភេ⊣	00	00	w 0	2, 0	* 0 0	*	юH	
Urinary bladder	v , O	00	00	ъ c	<i>s</i> o	*.0	* -	ıs O	
UterusNumber examined: GLANDULAR DILATATION HYDROMETRA					¥, A O	101	* 0 * 1	R 70 73	
TailNumber examined: SCAB/S CHRONIC INFLAMMATION	000		000	000	000	000	000	000	

^{*} Includes one animal which was found dead on day 23 of the study.

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

TABLE 12.2 - Microscopic observations - Recovery phase - Group incidence

Controls from group(s): 1	Animal sex:	A n i m	នាងន	Affected Fenales	
Hissures With Diagnosses	Dosage group: No. in group:			ls 4 5 5	
Liver INFLAMMATORY CELL FOCI BILE DUCT PROLIFERATION HEPATOCYTIC HYPERTROPHY HEPATOCYTIC NECROSIS CHRONIC INFLAMMATION HAEMORRHAGE	Number examined:	N N N N O O O O		www.ooo	\$
LUNGS INFLAMMATORY CELL FOCI AGCREGATIONS OF ALVEOLAR MACROPHAGES PERIBRONCHIAL LYMPHOID HYPERPLASIA VASCULAR MINERALIZATION ALVEOLAR HAEMORRHAGE FRAGMENT/S OF BONE	Number examined:	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000	
Thymus ATROPHY CONGESTION/HAEMORRHAGE	Number examined:	NO 0		M C C	

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

FINAL REPORT

VOLUME II OF II

Total number of pages Volume II: 246

Contents - Volume II

Page

Appendices

APPENDIX 1 - Mortality - Individual data	2
APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treat	ment
- Individual data	
APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of reco	
- Individual data	
APPENDIX 3.1 - Motor activity - At the end of treatment - Individual data	
APPENDIX 3.2 - Motor activity - At the end of recovery - Individual data	
APPENDIX 4.1 - Body weight (g) - During treatment - Individual data	
APPENDIX 4.2 - Body weight (g) - During recovery - Individual data	
APPENDIX 5.1 - Body weight change (g) - During treatment - Individual data	22
APPENDIX 5.2 - Body weight change (g) - During recovery - Individual data	2 <i>€</i>
APPENDIX 6.1 - Food consumption (g/animal/day) - During treatment - Cage data	
APPENDIX 6.2 - Food consumption (g/animal/day) - During recovery - Cage data	
APPENDIX 7.1 - Haematology - At the end of treatment - Individual data	32
APPENDIX 7.2 - Haematology - At the end of recovery - Individual data	
APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data	44
APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data	
APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data	
APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data	
APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data	
APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data	
APPENDIX 11.1 - Relative organ weights - Final sacrifice - Individual data	80
APPENDIX 11.2 - Relative organ weights - Recovery sacrifice - Individual data	84
APPENDIX 12 - Macroscopic and microscopic observations - Individual data	88
Addenda	
ADDENDUM I - Computer abbreviations and symbols	150
ADDENDUM II - Abbreviations of neurotoxicity tests	
ADDENDUM III - Analytical method and validation report for formulation analysis and form	nulation
analysis results	154
ADDENDUM IV -Analytical method and validation report for toxicokinetic analysis and	
toxicokinetic analysis results	169
ADDENDUM V - Certificate of analysis	213
ADDENDUM VI - Study protocol	215
ADDENDUM VII - Clinical pathology report	
ADDENDUM VIII - Historical control data	234

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 1 - Mortality - Individual data

			######################################
ound dead	osing phase Found dead	F Dosing phase Found dead	Dosing phase

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treatment - Individual data

	RIGH			लललिल	
	Idna	+++++++++	+ + + +	+ + + +	+ + + + + + + + +
	TAIL	0000000000	00101	01000	00000000000000000000000000000000000000
	CLIK	0000000000	00000	00000	0000000000
	TOUC	дараааааа	ਜਿਰਜਰ	러른 레	
	APPR	ਜਿਜਰਜਰਜਰਜਰ	00444	ਜਜਜਜਜ	
	dnox9	T.	7	en,	d.
MALES	Animal Number	36710002 36710004 36710008 36710008 36710012 36710014 36710014 36710018	36710024 36710024 36710026 36710028 36710030	36710032 36710034 36710036 36710038	36710042 36710044 36710046 36710050 36710050 36710054 36710056 36710056 36710058

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treatment - Individual data

MALES									
Animal Number	Group		GRI1	GRI2 S	GRIM	BW	LANI	LAN2	LANY Cm
	 	1	,	,	 	ה ו ו ו			
36710002	Н		42	12	27.0	352.0	9.5	6.0	7,75
36710004			19	Q	12.5	370.0	8.3	7.1	7.70
36710006			36	10	23.0	351.1	8.1	6.3	7.20
36710008			30	ω	19.0	341.0	7.5	7.2	7.35
36710010			25	12	18.5	355.4	6.8	7.3	7.05
36710012			35	20	27.5	350.0	ლ. დ	7.4	7.85
36710014			40	16	28.0	333.1	7.2	6.4	6.80
36710016			38	20	29.0	348.2	6.5	8.4	7.45
36710018			20	18	19.0	325.0	6.3	7.4	6.85
36710020			22	17	19.5	350.9	e. 9	7.1	6,95
		Mean	30.7	13.9	22.30	347.67	7.53	7.06	7.295
		SD	8.7	5.0	5.45	12.36	1.01	0.69	0.385
36710022	2	 	10		6.5	357.5	5.0	4.6	4.80
36710024			29	12	20.5	331.1	5	7.3	06.7
36710026			26	근	18.5	335.9	10.0	ຸຜ	0.05
36710028			0	1 0	19.5	353.0	7.0	4.0	5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
36710030				m	7.0	363,5	5.5	D	5.50
		Mean	17.2	11.6	14,40	348.20	7.20	. D	065.9
		SD	დ. დ.	10.6	7.02	14.03	2.08	1.88	1.896
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
36710032	ო		15	ო	0.6	358.4	7.0	7.2	7.10
36710034			24	4	14.0	366.7	5.8	5.2	5.50
36710036			٢	9	6.5	369.7	5.0	0.0	5.00
36710038			17	m	10.0	348.7	6.5	დ. ლ.	5.00 9.00
36710040			13	m	8.0	350.8	5.3	5.8	5.55
		Mean	15.2	ю. М	9.50	358.86	5.92	5.70	5.810
		SD	6.2	1.3	2.83	9.32	0.83	0.89	0.789
36710042	4		43	φ	24.5	290.4	6.5	5.0	5.75
36710044			თ	7	8.0	335.1	5.8	ъ.	
36710046			O	2	5.5	318.0	6.5	4.2	5,35
36710048			თ	ო	6.0	359.3	4.5	4.5	4.50
36710050			თ	4	6.5	301.9	4.0	4.0	4.00
36710052			20	ო	11.5	328.7	6.2	4.6	5.40
36710054			러	7	1.5	329.7	დ დ	5.8 8.0	7.15
36710056			თ	m	0.9	315.8	5.0	5.2	5.10
36710058			19	9	12.5	303.5	0.8	8 S.	8.25
36710060			7		6.5	320.0	10.0	9. 13.	9.75
		Mean	13.5	4.2	8.85	320.24	6.50	5,66	6.080
		SD	11.7	٠	6.31	19.55	1.87	1.85	1.79

Volume II

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treatment - Individual data

FEMALES							
Animal Number	dnozg	APPR	rouc	CLIK	TAIL	PUPI	яісн
36710001 36710003 36710005 36710007 36710009 36710011 36710011 36710017 36710017	1		н енананана	000000000	000000000	+++++++	
36710021 36710023 36710025 36710027 36710029	2	7787	ਜ਼ਿਜ਼ਿਜ਼ਜ਼	2222	00000	+++++	4471 1
36710031 36710033 36710035 36710037 36710039	m	88448	ਜਜਜਜਜ	00000	00000	+ + + + +	
36710041 36710043 36710044 36710049 36710049 36710053 36710055 36710055	4	4484844884	шынынынын	0000000000	000000000	+++++++++	. .

H-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 2.1 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of treatment - Individual data

ū	2
β	4
۲	7
5	S
è	4

Animal Number	Group		GRI1 s	 	GRIM	BW p	LAN1	LAN2 cm	LANM cm	
36710001 36710003 36710005			0 4 4 7 4 4 5 5	<u> </u>	22.0 24.5 28.0	250.3 237.6 233.5	4.0 7.5 8.5	4.00 	4.15 7.00 8.40	
36710007 36710009 36710011			9. T- 8		7.0 34.5 16.0	212.5 218.9 236.6	3.8 2.0.	0 0 0 0 0 0	5.75 7.35 6.50	
36710013 36710015 36710017 36710019			& R B 4		21.5 28.5 29.0 29.0	213.0 220.1 218.9	ი w 4 ო თ ი w w	0 4 4 W	6.60 8.50 8.1.50 8.20 8.20	
		Mean	39.5 12.7		24.00 7.89	227.10 12.39	6.05 1.92	5.47	5.760 1.667	
36710021 36710023 36710025 36710027 36710029	7	Mean SD	118 339 133 25.6 10.6		22.30 22.30 22.30 22.30	221.3 245.9 226.5 212.5 237.0 228.64 13.10	6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	00 1	5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	
36710031 36710033 36710035 36710037 36710039	m	Mean SD	335 31 17 17 38 38 26.0 13.0	 	21.5 23.5 15.0 6.0 22.0 17.60	242.6 212.7 224.6 210.8 215.6 221.26 13.05		8	6.25 6.50 4.15 4.45 4.75 5.220 1.079	
36710043 36710043 36710045 36710044 36710044 36710053 36710053 36710055 36710055 36710055	4.	Mean SD	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9	19.0 22.5 22.5 22.5 22.5 23.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	200.7 200.7 200.7 230.7 213.0 218.4 209.6 206.2 211.51	4467486748			

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of recovery - Individual data

	APPR TOUC CLIK TAIL PUPI RIGH	1 1 2 2 1 1 1 2 2 1 1 1 1 1 1 1 2 2 1	36710052 4 1 1 1 1 + 1 4 1 36710054 1 1 2 1 + 1 1 2 36710056 1 1 2 1 + 1 1 2 36710058 1 1 2 1 + 1 1 2 36710058 1 1 1 2 2 1 + 1 1 2 36710060
	RIGH	ਜ਼ਿਹਜ਼ਰ ਜ਼ਿਹਜ਼ਰ	तिननसम
	PUPI	++++	++++
	TAIL	 ਜ਼ਜ਼ਜ਼ਜ਼ 	анна
	CLIK	00000	- 0000
	TOUC	H H H H H H H H H H H H H H H H H H H	ਰਰਕੜਰ
	APPR		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AALES			ব
MALES	Animal Number	36710012 36710014 36710016 36710018 36710020	36710052 36710054 36710056 36710058 36710060

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of recovery - Individual data

STUDY NO.: MALES

Animal Number	Group		GRI1 s	GRI2 s	GRIM	BW	LAN1 cm	LAN2 cm	LANM cm
36710012				4	3.5	395.4	4.0	5.8	4.90
36710014			ო	00	5.5	368.2	8.0	9.7	8.60
36710016			24	w	13.5	392.0	7.9	5.7	6.80
36710018			ເກ	ហ	5.0	362.4	5.5	7.0	6.25
36710020			4	4	4.0	392.9	7.5	7.4	7.45
		Mean	7.8	4.8	6.30	382.18	6.58	7.02	6.800
		SD	٤.	1.9	4.10	15.59	1.76	1.43	1.376
36710052			19		12.0	306.4	6.0	4.0	5.00
36710054			26	ø	16.0	218.5	9.0	6.5	6,70
36710056			13	ထ	10.5	265.1	7.5	7.5	7.50
36710058			ω	7	7.5	307.1	4.0	0.6	9.20
36710060			20	v	13.0	309.3	9.4	9.5	9.30
		Mean	17.2	6.4	11.80	281.28	7.84	7.24	7.540
		SD	6.9	1.1	3.13	39.64	1.52	2.12	1.804

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of recovery - Individual data

FEMALES	FEMALES	5 5 6 6 8						
Animal Number		APPR	TOUC	CLIK	TAIL	PUPI	RIGH	APPR TOUC CLIK TAIL PUPI RIGH
36710011 36710013 36710015 36710017 36710017		ਰਜਸਥਵ	ਜਜਰਜਰ	10000	ਜਜਜਲਜ	++++	канн	
	"	1 1 2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2 2 1	аа мме	иппип	 	H H H H T	! !	

APPENDIX 2.2 - Neurotoxicity assessment - Sensory reaction to stimuli - At the end of recovery - Individual data

	dnozg		GRII	GRI2 s	GRIM	BW		LAN2 cm	LANM cm
36710011 1 36710013 36710015 36710019 Mea SD 36710053 36710055 36710055 36710055 36710055 36710055 36710055	4	Mean SD Mean	11 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	2 1 7 8 1 9 1 7 8 9 1	18.5 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	251.6 223.6 233.6 233.4 233.4 233.4 235.4 219.5 197.5 219.5 219.5 219.5 213.3 225.0	2. 4. 6. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	C O C C C C C C C C C C C C C C C C C	7.60 7.30 6.65 5.50 6.410 1.127 4.45 5.00 5.45 6.00 5.45 6.00
		SD	м ж	m m	2.49	11.79	2.05	0.35	1,164

M-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 3.1 - Motor activity - At the end of treatment - Individual data

MALES				
Animal Number	Group		COUN	
36710006 36710006 36710006 36710008 36710012 36710012 36710018 36710018 36710018	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mean SD	673 1029 778 778 558 1181 913 917 917 917 904.6	
36710022 36710024 36710026 36710028 36710030	2	Mean SD	1162 808 786 1121 751 925.6	
36710032 36710034 36710036 36710038 36710040	m	Mean SD	1202 1235 1411 1179 684 1142.2 271.9	
	4	Mean SD	384 843 1102 1176 1062 638 1286 823 812 335 846.1	

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 3.1 - Motor activity - At the end of treatment - Individual data

FEMALES				
Animal Number	Group		COUN	
36710001 36710003 36710005 36710007 36710011 36710011 36710015 36710015	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		SD		
36710021 36710023 36710025 36710025	61	Mean SD		
36710031 36710033 36710035 36710037 36710039	m	Mean SD		
36710041 36710043 36710047 36710047 36710051 36710053 36710053 36710055 36710057	ч	Mean SD	838 1062 900 1169 1084 622 717 995 1049 924 936.0 SD 171.9	

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 3.2 - Motor activity - At the end of recovery - Individual data

MALES			
	Group	790, PR 401 UP 407 107 107 007 007 007 007 007 007 007 0	COUN
		Mean	1109 1100 918 449 1076 930.4 280.1
36710052 36710054 36710056 36710058 36710060	A Mean		

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 3.2 - Motor activity - At the end of recovery - Individual data

STUDY NO.:				
FEMALES				
Animal	dnozg		COUN	
36710011	! ! ! ! ! ! !		 	
36710013			813	
36710015			1067	
36710017			1020	
36710019			820	
		Mean	8.876	
		SD	159.9	
36710051	4		843	
36710053			917	
36710055			1075	
36710057			844	
36710059			996	
		Mean	929.0	
		SD	8,96	

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 4.1 - Body weight (g) - During treatment - Individual data

340.4 322.0 325.1 345.9 356.1 14.91 340.0 365.3 352.5 345.0 352.6 5 351.08 9.58 345.0 367.8 380.8 340.6 340.6 340.5 333.9 334.7 351.0 10 356.4 324.7 334.7 346.1 367.3 5 345.82 16.90 Phase 323.2 338.3 325.6 325.9 325.9 325.0 307.1 307.1 320.5 10.3 11.81 330.3 299.6 302.9 316.6 328.3 315.54 14.11 44 0 Бау 296.2 298.6 294.8 304.0 297.7 280.7 285.7 277.4 291.6 10 300.5 279.4 285.0 291.1 303.2 5 5 10.09 250.1 250.6 256.0 256.0 250.6 250.5 250.5 250.5 250.5 250.6 251.2 239.4 245.6 247.6 260.4 250.4 7.73 2000.5 1899.6 2002.4 2002.4 2002.4 2002.0 2002.1 2002.1 2002.0 2003.0 20 202.5 188.6 1198.9 108.1 208.6 199.35 7.28 (n) Mean SD (n) Mean SD Group N 36710002 36710004 36710006 36710010 36710012 36710014 36710018 36710018 36710022 36710024 36710026 36710028 Animal Number

= Dosing phase Note: ! = Pretest phase; "

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 4.1 - Body weight (g) - During treatment - Individual data

MALES									
Animal Number	Group			 	D a y 8	of Pha 15	s e 22	0.51	
36710032	m		191.5	251.5	290.5	322.5	352.8	348.6	7
36710034			200.0	263.1	299.5	332.4	352.3	354.5	
36710036			203.3	248.6	291.2	328.3	363.9	358.5	
36710038			198.4	252.0	292.7	308.6	344.5	331.6	
36710040			205.3	259.3	295.5	321.6	346.1	337.9	
		(u)	S	S	ស	ιĵ	ம	ம	
		Mean	199.71	254.91	293.88	322.67	351.92	346.24	
		SD	5.33	6.07	3.67	9.03	7.66	11.27	
36710042	な		208.7	257.4	293.9	307.7	303.0	246.5	
36710044			195.4	246.5	297.2	332.3	342.8	294.7	
36710046			192.3	245.0	280.9	300.0	310.9	279.5	
36710048			206.9	255.6	306.9	325.5	348.5	309.1	
36710050			199.8	252.7	298.6	314.7	306.9	263.7	
36710052			203.2	254.1	290.5	321.5	330.0		
36710054			201.1	253.2	296,8	326.9	326.8		
36710056			202.7	255.5	293.7	316.8	313.9		
36710058			185.0	234.3	279.0	293.2	303.3		
36710060			198.2	241.6	284.9	318.1	327.6		
		(n)	10	10	10	10	10	ഗ	
		Mean	199.33	249.58	292.24	315.66	321.36	278.69	
		SD	7.04	7.46	8.61	12.27	16.25	24.70	

Note: ! = Pretest phase; " = Dosing phase

ividual data

FEMALES

·Ή
ਲ
Ĕ
н
ı
Ţ)
G
Ď.
5
Œ
ø
H
-
b
F
건.
岩
Ā.
ı
_
p
_
ų
Ċ
g
:님
ş
➣
Ö
മ്
ı
m
•
4
×
\Box
9
4
PENDIX

Animal Number	Group	ᅱ	1.1	Д 8 У в у	of Pha 15	s e 22	59	
36710001		161.4		211.4	211.6	238.3	245.9	
36710003		165		199.3	213.1	233.4	243.7	
36710005		163		208.7	218.7	237.6	237.3	
36710007		166		187.6	199.5	215.0	230.1	
36710009		159		192.7	204.4	213.1	219.0	
36710011		155		192.4	204.6	234.8		
36710013		156		190.0	190.7	209.2		
36710015		153		171.1	188.7	207.7		
36710017		152		184.3	197.8	216.2		
36710019		149		181.2	203.3	223.9		
	~			10	10	10	ம	
	Me	Mean 158.		191.88	203.24	222.92	235.19	
	S		88 11.36	12.24	9.53	12.14	10.93	
36710021	2	152		181.8	210.9	226.2	229.7	
36710023		159		204.0	227.6	241.6	244.5	
36710025		163		198.1	211.0	218.3	235.3	
36710027		153		179.3	198.9	215.6		
36710029		168		196.7	218.9	223.1	238.5	
)			மி	ഗ	រភ	4	
	Me	Mean 159.		191.97	213.44	224.97	237.02	
	ιņ			10.83	10.67	10.19	6.18	

Note: ! = Pretest phase; " = Dosing phase

APPENDIX 4.1 - Body weight (g) - During treatment - Individual data

Animal Number Group 36710031 3 36710033 36710035								
		-	Ē	D a y	े हैं जिस्	0 0	o r	
36710031 36710033 36710035 36710035	Ω,	; T	: 1 1 1 1 1 1	מ	c T	77	۶,7	
36710033 36710035 36710037		166.9	180.6	218.0	227.9	234.9	253.6	
36710035 36710037		162.0	181.1	196.7	205.1	223.3	226.2	
36710037		154.0	163.6	189.3	199.1	220.8	234.5	
		157.0	169.0	187.8	193.6	205.8	222.3	
36710039		151.5	172.8	182.1	198.4	213.1	221.6	
	(u)	ιŋ	ın	ĸ	S	ις	'n	
	Mean	158.28	173.42	194.78	204.80	219.57	231.64	
	SD	6.18	7.53	13.99	13.53	10.97	13.29	
36710041 4		151.6	169.1	164.2	189.2	195.1	210.1	
36710043		156.1	167.9	191.9	194.8	212.5	209.7	
36710045		157.0	175.0	184.7	202.0	209.2	203.7	
36710047		166.2	170.5	194.4	206.2	225.4	219.6	
36710049		169.1	189.6	199.4	214.2	222.4	222.4	
36710051		162.9	181.2	196.8	205.7	224.3		
36710053		151,5	175.4	181.3	206.4	200.9		
36710055		155.8	177.7	195.4	199.4	210.1		
36710057		164.6	169.9	194.6	204.7	222.3		
36710059		154.3	185.0	194.7	202.0	211.7		
	(E)	10	10	10	10	10	ιΩ	
	Mean	158.92	176.11	189.75	202.43	213.40	213.07	
	SD	6.30	7.27	10.54	6.89	10.26	7.70	

Note: ! = Pretest phase; " = Dosing phase

APPENDIX 4.2 - Body weight (g) - During recovery - Individual data

20
STUDY NO.

MALES

Animal Number	Group		Day of Phase 8	15
36710012 36710014 36710016 36710018 36710020	1 (n) Mean SD	; ; ; ; ; ; ; ;	388.5 366.7 397.3 357.0 388.6 5 379.63 16.96	384.0 353.2 386.2 343.1 376.5 5 368.60 19.32
36710052 36710054 36710056 36710058 36710060	(n) Mean SD	316.3 297.8 285.3 303.2 308.2 302.16	303.0 225.4 262.1 306.8 310.4 5 5 281.52 36.96	284.1 233.4 253.3 304.3 308.1 276.64

Note: Data for Recovery phase

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 4.2 - Body weight (g) - During recovery - Individual data

FEMALES				
Animal Number	group	г	Day of Phase 8	15
36710011 36710013 36710013 36710015 36710017	1 (n) Mean SD	245.3 219.9 226.3 231.9 233.3 231.34 9.42	254.0 225.9 230.3 226.4 231.9 5 233.68 11.63	240.8 218.1 222.7 225.6 220.8 5 225.59 8.92
36710051 36710053 36710055 36710057 36710059	4 (n) Mean SD	206.4 203.8 206.7 220.9 201.8 5 207.92	220.8 202.8 215.0 224.6 226.5 217.92 9.52	201.5 194.3 200.0 214.9 213.1 204.76 8.87

Note: Data for Recovery phase

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 5.1 - Body weight change (g) - During treatment - Individual data

MALES

Animal		c	рау	of	
Number	dnoze	000	5.	2.7	67
36710002	Н	46.2	73.2	94.9	6.68
36710004		48.0	87.7	117.2	114.7
36710006		38.8	71.6	94.7	96.4
36710008		35.7	67.0	81.6	86.1
36710010		43.4	71.6	94.5	92.1
36710012		46.7	74.4	0.66	
36710014		28.3	54.7	81.5	
36710016		35.8	68.3	97.3	
36710018		35.0	55.3	82.3	
36710020		46.4	75.3	105.8	
	(n)		10	10	w
	Mean		69.91	94.89	95.83
	SD		9.66	11.31	11,20
36710022	7	49.4	79.1	105.2	89.2
36710024		40.0	60.2	85.2	82.6
36710026		39.4	57.3	89.1	79.5
36710028		43.5	69.0	98.5	98.4
36710030		42.8	68.0	106.9	95.7
	(u)		ഹ	ហ	ហ
	Mean		66.71	96.99	89.07
	SD		8.55	9.59	8.14

" = body weight change relevant to Day 1 of study

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 5.1 - Body weight change (g) - During treatment - Individual data

MALES

Mumber Group 8 15 Day of Phase 29 36710032 3 39.1 71.0 101.3 97.2 36710034 36.4 69.3 19.2 36710036 46.0 62.2 85.9 66.8 36710042 4 36.5 85.9 85.9 86.3 36710046 51.3 69.9 96.3 44.3 36710052 44.7 58.6 66.08 36710054 44.7 58.9 68.9 58.5 85.9 86.8 87.9 11.0 36710054 44.7 58.9 68.9 88.9 87.9 11.0 36710054 44.7 58.9 68.9 88.5 88.5 88.5 88.5 88.5 88.5 88.5 8	1						
3 39.1 71.0 101.3 36.4 42.6 69.3 40.8 89.2 115.3 40.8 86.8 86.8 86.8 86.8 86.8 86.8 86.8 8	Animal Number	Group		8	Ω	44	29
36.4 69.3 89.2 42.6 79.7 115.3 42.6 56.6 92.5 86.8 86.8 86.8 85.9 87.01 8.79 11.62 95.5 95.0 92.5 95.0 92.5 95.0 92.5 95.0 92.5 95.0 92.5 95.0 92.5 95.0 92.5 95.0 92.5 95.0 92.5 95.0 92.5 95.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0 92	36710032	1 1 1 1 1 1		39.1	71.0	101.3	97.2
42.6 79.7 115.3 42.6 86.8 86.8 86.8 86.8 86.8 86.8 86.8 8	36710034			36.4	69.3	89.2	91.4
(n) 5.6.6 92.5 86.8 86.8 86.8 86.8 86.8 86.8 85.1 62.2 86.8 86.8 87.7 6 92.5 86.8 87.7 6 92.5 86.8 87.7 6 92.5 86.8 87.7 6 92.5 86.8 87.7 6 92.0 97.01	36710036			42.6	7.67	115.3	109.9
(n) 5 5 5 5 6 86.8 Mean 38.98 67.76 97.01 SD 2.78 8.79 11.62 4 36.5 85.9 86.9 96.3 50.7 85.9 86.8 51.3 69.9 99.9 93.0 46.0 62.1 54.3 58.4 67.4 75.9 43.3 76.5 88.9 68.9 43.4 7 76.5 86.0 Mean 42.66 66.08 71.78 SD 5.78 10.74 16.62	36710038			40.8	56.6	92.5	7.67
Mean 38.98 67.76 97.01 SD 2.78 8.79 11.62 4 36.5 85.9 85.9 86.3 35.9 85.9 86.3 51.3 62.1 55.8 52.1 55.9 65.8 36.4 67.4 75.9 43.3 76.5 88.9 68.9 44.7 88.9 68.9 Mean 42.66 66.08 71.78 SD 5.78 10.74 16.62	36710040			36.1	62.2	86.8	78.6
Mean 38.98 67.76 97.01 SD 2.78 8.79 11.62 11.62 4 36.5 50.3 45.6 50.3 45.6 50.9 96.3 96.3 51.3 69.9 65.8 62.1 65.8 93.0 65.8 43.4 73.7 73.6 43.3 76.5 88.9 68.9 44.7 58.9 Mean 42.66 66.08 71.78 SD 5.78 10.74 16.62			(E)	ς,	ഗ	ស	w
A 36.5 8.79 11.62 4 36.5 85.9 45.6 50.7 85.9 96.3 35.9 65.8 51.3 69.9 63.0 62.1 54.3 63.4 66.0 62.1 73.7 73.6 73.7 73.6 73.6 68.9 86.0 Mean 42.66 66.08 71.78 SD 5.78 10.74 16.62			Mean	38.98	67.76	97.01	91.34
4 36.5 50.3 45.6 50.3 50.3 50.3 50.3 50.3 50.3 50.3 50.3			SD	2.78	8.79	11.62	13.00
50.7 85.9 96.3 51.3 65.8 65.8 51.3 66.0 46.0 67.4 75.9 43.2 61.3 75.9 43.3 76.5 86.0 10 10 10 Mean 42.66 66.08 71.78 55.9 96.3 65.8 95.9 68.9 68.9 10 10 10	36710042	4,		36.5	50.3	45.6	0.011
35.9 54.9 65.8 51.3 69.9 93.0 46.0 67.4 75.9 43.4 67.4 75.9 44.7 61.3 73.4 44.7 58.9 68.9 44.7 58.9 68.9 44.7 58.9 68.9 Mean 42.66 66.08 71.78 5.78 10.74 16.62	36710044			50.7	85.9	96.3	48.3
51.3 69.9 93.0 46.0 62.1 54.3 36.4 67.4 73.5 43.6 61.3 73.6 61.3 58.9 68.9 44.7 58.9 68.9 43.3 76.5 86.0 Mean 42.66 66.08 71.78 5.78 10.74 16.62	36710046			35.9	54.9	65.8	4.4
46.0 62.1 54.3 36.4 67.4 75.9 43.6 73.7 75.9 73.6 88.9 44.7 58.9 68.9 43.3 76.5 86.0 Mean 42.66 66.08 71.78 57.8 10.74 16.62	36710048			51.3	თ. იც	03.0	53,53
36.4 67.4 75.9 43.6 73.7 73.6 38.2 61.3 58.5 44.7 58.9 68.9 43.3 76.5 86.0 Men 42.66 66.08 71.78 5.78 10.74 16.62	36710050			46.0	62.1	54.3	11.0
43.6 73.7 73.6 38.2 61.3 58.5 44.7 58.9 68.9 43.3 76.5 86.0 10 10 Mean 42.66 66.08 71.78 SD 5.78 10.74 16.62	36710052			36.4	67.4	75.9	
38.2 61.3 58.5 44.7 58.9 68.9 43.3 76.5 86.0 Mean 42.6 66.08 71.78 SD 5.78 10.74 16.62	36710054			43.6	73.7	73.6	
44.7 58.9 68.9 43.3 76.5 86.0 10 10 10 Mean 42.66 66.08 71.78 SD 5.78 10.74 16.62	36710056			38.2	61.3	58 55	
(n) 10 10 10 10 10 10 Mean 42.66 66.08 71.78 SD 5.78 10.74 16.62	36710058			44.7	58.9	68.9	
10 10 42.66 66.08 5.78 10.74 16.62	36710060			43.3	76.5	86.0	
42.66 66.08 71.78 5.78 10.74 16.62			(u)	10	10	10	'n
5.78 10.74 16.62			Mean	42.66	66.08	71.78	27.26
			SD	5.78	10.74	16.62	26.92

[&]quot; = body weight change relevant to Day 1 of study

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 5.1 - Body weight change (g) - During treatment - Individual data

FEMALES					
Animal Number	Group		D a Y	of Phase	29
36710001	 	17.8	17,9	44.6	52.2
36710003		18.6	32.4	52.7	63.0
36710005		23.0	33.0	51.8	51.6
36710007		12.7	24.6	40,1	55,2
36710009		12,4	24.1	32.8	38.7
36710011		14.9	27.1	57.3	
36710013		20.0	20.6	39.2	
36710015		11.8	29.5	48.4	
36710017		24.3	37.8	56.2	
36710019		17.9	39.9	60.5	
	÷.		10	10	ı,
	Mean		28.69	48.37	52,12
	S		7.18	9.01	8.76
36710021	2	11.8	40.8	56.2	59.7
36710023		22.6	46.2	60.2	63.1
36710025		16.1	29.0	36.3	53,3
36710027		12.9	32.6	49.3	
36710029		12.4	34.6	38.8	54.2
	u)		ស	ഹ	C [†]
	Mean		36.64	48.17	57.59
	อร		6,86	10.46	4.66

" = body weight change relevant to Day 1 of study

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 5.1 - Body weight change (g) - During treatment - Individual data

FEMALES

Animal Group B 15 D a y of Eq. Phase 22 Phase 29 36710031 3 37.5 47.3 54.3 73.0 73.0 36710033 25.7 24.0 54.2 45.1 70.8 36710035 25.7 35.4 57.2 70.8 36710037 18.8 24.0 5.6 46.13 48.8 36710037 SD 10.75 10.05 46.15 58.22 36710041 A -4.9 20.0 41.0 41.0 36710045 SD 24.0 26.8 44.6 41.0 36710045 SD 32.8 32.8 32.8 36710045 SD 34.6 32.8 32.8 36710047 SD 34.6 32.8 32.8 36710055 SD 32.6 32.8 32.8 36710057 SD 32.6 32.8 32.8 36710057 SD 32.6 32.8							
3 37.5 47.3 54.3 54.3 54.3 55.4 35.4 35.4 35.8 35.4 57.2 24.0 42.2 25.6 46.3 57.2 24.6 57.2 24.6 57.2 25.6 46.3 25.8 46.12 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0]	Group		ω	rd D	f Phas 22	50
4 -4.9 20.1 26.0 26.8 44.6 9.7 25.9 34.3 24.6 34.3 34.3 23.9 20.1 26.0 34.3 25.6 9.8 44.6 32.8 15.6 24.5 24.5 25.5 31.0 25.5 31.0 25.5 9.8 17.0 26.8 17.0 Mean 13.63 26.32 37.29 SD 9.45 6.11 10.84	36710031 36710033 36710035 36710037 36710039	 m 	(n) Mean SD	37.5 15.5 18.8 18.8 9.4 21.36	47.3 24.0 35.4 24.6 25.6 31.38	54.3 42.2 57.2 36.8 40.3 46.15	73.0 45.1 70.8 53.3 48.8 5 5 5 12.87
	36710041 36710043 36710047 36710049 36710051 36710053 36710053 36710055	d'	(n) Mean SD	4 4 9 4 4 4 9 4 4 9 4 4 9 4 4 9 4 9 4 9	20.1 26.8 27.0 24.6 24.6 31.0 31.0 31.0 10.0 10.0 6.32	26.0 34.5 34.9 32.9 32.9 32.5 10.8 10.8 84.9	41.0 41.7 28.7 49.0 32.8 32.8 7.99

" = body weight change relevant to Day 1 of study

#4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 5.2 - Body weight change (g) - During recovery - Individual data

MALES

Animal Number	Group		1	D A	0 f P P B B B B	15
36710012 36710014 36710016 36710018 36710020	2	(n) Mean SD	122.0 122.0 121.4 126.3 126.3 113.46		137.9 1147.3 114.6 143.5 131.53	133.4 100.8 136.2 100.8 131.3 5 120.50
36710052 36710054 36710056 36710060	ਹ ਾਂ	(n) Mean SD	62.2 29.8 68.9 66.6 66.7 16.72		48.9 6.6 72.5 68.8 5.5 33.78	30.0 -19.8 -2.1 70.0 66.5 5. 28.90 40.11

[&]quot; = body weight change relevant to Day 1 of study

APPENDIX 5.2 - Body weight change (g) - During recovery - Individual data

Animal Number	Group	ਜ	Day of Phase 8	15
36710011	í 	67.8	76.5	
36710013		49.8	8,00	48.0
36710015		67.0	71.0	63.4
36710017		71.9	66.4	65.7
36710019		70.0	68.5	57.5
	(n)	ហ	ις	ıv
	Mean	65.31	67.65	59.56
	SD	8.86	7.62	7.13
36710051	작	25.2	39.6	20.4
36710053		28.4	27.4	18.9
36710055		29.0	37.3	22.3
36710057		51.0	54.7	45.0
36710059		16.8	41.5	28.2
	(u)	ហ	Ś	Ŋ
	Mean	30.11	40.11	26.95
	SD	12.67	9.81	10.69

* = body weight change relevant to Day 1 of study

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 6.1 - Food consumption (g/animal/day) - During treatment - Cage data

MALES

 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				i]	
Cage	Group			8 m C m 8	of Phase 15	22	29
П	H		25.1	27.3	25.7	28.0	24.8
2			25.2	26.0	27.0	26.8	27.4
		(u)	7	7	2	7	2
		Mean	25.13	26.64	26.35	27.40	26.09
m	7		24.8	25,9	28.0	27.6	23.4
		(n)	Н	н	1	,	H
4	ო		25.2	26.6	27.6	27.7	24.0
		(u)	~	П	ц	1	rd
ιŊ	4		25.8	27.7	26.9	25.8	18.7
φ			24.0	25.5	24.0	25.2	23.1
		(u)	0	2	2	03	61
		Mean	24.89	26.62	25.46	25.47	20.90

Note: | = Pretest phase; " = Dosing phase | food consumed over the previous period

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 6.1 - Food consumption (g/animal/day) - During treatment - Cage data

9	, ,	ō	>ī es □	of Phase	c	ć
e o o	ogge orong	0	: a	Ω - 1	77	67
7			18.3	17.8	18.9	19.8
œ		15.8	17.6	18.2	19.5	19.6
	(n)	71	2	7	7	2
	Mean	16.82	17.95	17.99	19.17	19.73
o,	74	17.6	18.4	19.9	19.6	19.0
	(n)	r-4	г	Ħ	 1	п
10	ന	17.5	18.5	18.5	18.9	18.5
	(u)	П	П	₩	н	ч
11	ት	16.5	16.8	18.3	19.2	18.9
12		18.1	18.3	17.5	18.4	7.7
	(u)	74	2	7	Ŋ	2
	Mean	17.28	17.58	17.88	18.81	18 34

Note: | = Pretest phase; " = Dosing phase " = food consumed over the previous period

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 6.2 - Food consumption° (g/animal/day) - During recovery - Cage data

MALES	MALES					
Cage	dnozg		æ	Day of	មា ក្នុន ខ	14
2	2 1 (n)	(1	26.8			26.8
v	4 (n	(u)	17.9			24.4

Note: Data for Recovery phase " = food consumed over the previous period

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 6.2 - Food consumption (g/animal/day) - During recovery - Cage data

	14	18.6 1	18.5 1
	Cage Group	18.7	19.0 1
	Gnox5	1 (n)	4 (n)
FEMALES	Cage	ω	12

Note: Data for Recovery phase $^{\circ}$ = food consumed over the previous period

Volume II

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

Number	Group	RBC 10^12/1	HGB g/dl	HCT &	MCV fl	MCH pg	MCHC g/dl	
36710002	F	8 23	15.2	0 6 A	11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0 F	
36710004	ŧ 	7.67	1.4.	7.04	ր Մու	0 0	7 0	
36710006	ı (-	, L	. r.	. r.	n G	r o	, c	
36710008	+ -	, o) C	, c) id	n u	2 n	
36710010	-، ۱	1 4 7	ο α Ο Γ) L	? - c	3 C	
	1	Mean 7.914	15.08	43.10	54.46	3. O. C.	ა. გ. ი. გ.	
		SD 0.243	0.33	0.96	1.69	0.00	0.34	
	2	7.63	15.0	42.1	55.2	19.7	35.6	
36710024	2	7.71	14.9	40.9	53.1	19.4	10 m	
36710026	2	7.41	14.1	39.1	52.7	19.1	36.2	
36710028	2	8.15	15.1	42.4	52.0	18.5	. w.	
36710030	2	8.14	15.7	44.5	54.7	19.3	35.3	
		Mean 7.808	14,96	41.80	53.54	19.20	35.84	
		SD 0.327	0.57	1.99	1.36	0.45	0.49	
36710032	т	7.63	14.6	41.6	54.5	19.2	35.2]
36710034	m	7.27	14.2	39.7	54.6	10.5	സ്സ	
36710036	ო	7.34	14.2	39.8	54.2	19.3	35.6	
36710038	က	27.7	15.7	44.4	57.1	20.2	35.4	
36710040	m	7.55	14.9	42.2	55.9	19.8	35.4	
		Mean 7.516	14.72	41.54	55.26	19.60	35,48	
		SD 0.213	0.62	1.94	1.22	0.41	0.23	
36710042	4	8 . 68	16.4	46.6	53.7	18.9	35.2	1
36710044	4	7.99	15.3	43.4	54.3	19.1	35.2	
36710046	4	8.44	15.9	45.1	53.5	18.8	30.5	
36710048	4	7.59	14.8	42.5	56.0	19.6	M 44	
36710050	4	8.26	15.7	43.6	52.8	19.1	36.1	
		Mean 8.192	15.62	44.24	54.06	19.10	35.32	
			0.61	1.62	1.21	0.31	0.45	

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

	PLT 10~9/1	861 15.3 776 16.5 933 16.7 Mean 888.4 15.8 15.8 15.7 0.72	806 931 820 888 888 695 Mean 828.0 SD 90.1	848 723 771 760 683 Mean 757.0 SD 61.5	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	dnoab		00000 -		ਹਾ ਹਾ ਹਾ ਹਾ
MALES	1	36710002 36710004 36710006 36710008 36710010	36710022 36710024 36710028 36710028 36710030	36710032 36710034 36710038 36710038 36710040	36710042 36710044 36710046 36710046

Volume~II

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

MALES										1
Animal Number	Gronb		WBC 10^9/1	NEU	LYM %	MON	EOS 8	BAS	LUC	
26710000	111111111111111111111111111111111111111		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 6				
10000	٠,		r 6	9 6) .					
36/10004	→		χ. 	23.3	۲. ۲	8.2		7.0	».o	
36710006			7.46	17.8	77.3	3.0	1.0	0.2	0.8	
36710008	 t		8,49	14.0	80.3	3.3	1.4	0.3	0.7	
36710010	н		7.99	23.7	72.3	2.6	0.5	0.2	7.0	
		Mean	8.414	20.28	75.00	2.92	0.90	0.20	0,74	
		SD	0.724	4.28	3.70	0.26	0.34	0.07	0.05	
36710022	2] 	8,96	14.5	79.3	3.5	1.3	0.2	1.2	
36710024	2		10.49	7.4	85.4	4.2	1.6	0.3	1.1	
36710026	2		7.23	17.8	77.4	2.8	1.0	0.1	6,0	
36710028	2		7.80	11.6	81.1	4.8	1.1	0.2	1.1	
36710030	2		9.41	11.0	84.2	2.7	1.3	0.2	0.5	
		Mean	8.778	12.46	81.48	3.60	1.26	0.20	0.96	
		S	1.296	3.91	3.33	0.90	0.23	0.07	0.28	
36710032	m		8.01	17.2	75.7	4.4	1.4	0.2	1,1	
36710034	m		8.02	16.2	78.6	2.9	1.1	0.4	0.8	
36710036	m		12.50	22.4	72.7	2.9	1.1	0.4	0.5	
36710038	m		6.48	16.8	77.3	3.0	7.8	0.5	0.6	
36710040	m		5.81	3.5	85.3	3.1	0.8	0.2	1.0	
		Mean	8.164	16.42	77.92	3.26	1.24	0.34	0.80	
		SD	2.609	4.59	4.68	0.64	0.38	0.13	0.25	
36710042	4		6.62	17.7	74.2	6.1	0.6	0.4	1.1) !
36710044	4		6.50	19.8	71.7	5.1	6.0	6.0	1.6	
36710046	4		7.38	5.6	89.0	3.0	1.2	0.7	0.5	
36710048	4		7.63	16.9	75.4	3.2	3.0	9.0	1.0	
36710050	4		5.99	12.5	81.2	4.2	0.5	0.5	1.1	
		Mean	6.824	14.50	78.30	4.32	1.24	0.62	1.06	
		SD	0.671	5.64	6.92	1.30	1.02	0.19	0.39	
						1				1

Volume~II

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

FEMALES								
Animal Number	dnox9	RBC 10^	12/1	HGB g/dl	HCT \$	MCV fl	мсн ре	MCHC g/dl
36710001 36710003		6.9	3	13.9 13.7	38.0 37.2	54.9	20.0	36.4
36710005 36710007 36710009	ਰਰਚ	Mean A. 7. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	О 4 4 0 0 О ш	13.0 14.4 13.2 13.2 5.64	35.5 36.2 36.2 37.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 5	53.8 54.0 53.7 53.62	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 8 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9
36710023 36710023 36710025 36710029	0000	6.9 7.2 7.1 7.0 Mean 7.0 SD 0.1	11 2 7 990 04	14.0 14.1 13.8 13.8 14.03	38.2 39.2 38.5 38.5 0.43	8 3 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	19.5 20.0 19.6 19.6 0.26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36710031 36710033 36710035 36710037 36710039		7.34 7.10 6.96 7.02 7.22 Mean 7.128 SD 0.153	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	144.1 13.8 13.8 14.4 0.31	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	19.2 19.8 19.5 19.6 19.62 0.30	3 4 5 7 5 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9
36710041 36710043 36710045 36710047 36710047	ਰਾ ਰਾਹਾਹਾ	Mean 7.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	13.2 14.4 14.4 13.5 0.46	35 135 135 135 135	55. 54.3 53.7 51.5 51.5 69.90	100.1 100.1 100.1 100.1 100.0 100.0 100.0	0 3 3 3 2 2 2 3 3 3 3 3 5 5 5 5 5 5 5 5 5

Volume II

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

STUDY NO.:

Animal Number	Group	PLT 10^9/1	PT
36710001		1057	
36710003	l (~)	840	
36710005	ı —	0.50	17.2
36710007	ı	LN	LM
36710009	-	135	LIN
		d	16.90
		SD 414.9	0.26
36710021	2	1032	16.4
36710023	2	1056	17.3
36710025	2	806	r. or
36710029	7	086	17.6
		Mean 994.0	16.95
		SD 65.5	65.0
36710031	ю	920	16.5
36710033	es	857	16.4
36710035	m	844	16.7
36710037	m	166	17.1
36710039	m	914	17.2
		Mean 905.2	16.78
		3	0.36
36710041	4	i	15.5
36710043	4	840	17.4
36710045	4	832	15.9
36710047	4	743	17.2
36710049	4	853	18.0
		c.	16.80
		9 P US	20° L

NT = NOT TAKEN

Volume II

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 7.1 - Haematology - At the end of treatment - Individual data

Animal Number	dnox5		WBC 10^9/1	NEU %	MXI *	MON &	ក្នា « O	BAS *	ruc %
36710003 36710003 36710005] 		8 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	4.8 12.7 14.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	 	0000	0000
36710009	→ ,•1	Mean SD	0.00 7.104 1.052	4 	88.6 85.06 3.73	1.20 1.30 1.30	11.7.0 1.4.4 22.4	0.1 0.14 0.05	0.7 0.72 0.13
36710021 36710023 36710025 36710029	~~~	Mean SD	:	17.4 12.3 11.4 8.8 12.48 3.60	74.5 80.9 83.6 85.0 81.00	3 8 8 7 4 8 0 0 8 4 0 0 8 4	1.1 1.2 1.2 1.2 4.0 4.0	0.2 0.1 0.1 0.15 0.06	0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.
36710031 36710033 36710035 36710037 36710039	мммм	Mean SD	66.27 6.27 6.38 6.38 6.924 8.824	6.2 14.2 16.1 10.1 10.9 11.50 3.84	86.0 77.9 78.9 84.8 80.8 81.96	4 / / / / / / / / / / / / / / / / / / /	20.1128.20 20.00.20 44.	0.2 0.1 0.2 0.2 0.1 0.16	1000.1000.000.0000.0000.0000.0000.0000
36710041 36710043 36710045 36710047 36710049	ਹਾ ਦਾ ਦਾ ਦਾ	Mean SD	2. 12 9. 12 4. 06 6. 06 6. 70 5. 806 7. 475	9.5 9.5 11.1 7.2 7.4 8.88 1.61	88 88 6.1 88 83.0 88 5.0 88 5.2 14.1	им в в в в в в в в в в в в в в в в в в в	10 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 4 4 0 0 0 0	00.22	0 0 0 H H O O O H O O O O O O O O O O O

M-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

MALES	ALES								
Animal Number	dnox5		RBC 10^12/1	HGB g/dl	HCT %	MCV	MCH Pg	MCHC g/dl	! !
36710012		 	8.30	 	43.6	52.6	1	35.2	[[!
36710016	ı (-) (8 0 2	150 200 200 200 200 200 200 200 200 200 2	. 6.) @ () @ (; = ; r	35.4	
36/10018			8.31	15,4	43.0	51.7	1 63 .	35.38	
		Mean SD	8.236 0.166	15.22	42.80	51.98 0.96	18.46 0.23	35.56 0.25	
36710052	4		8.05	14.7	39.4	49.0	18.3	37.4	-
36710054	4		6.64	12.4	33.0	49.7	18.7	37.6	
36710056	4		7.62	14.3	38.9	51.0	18.8	36.8	
36710058	4		7.65	14.5	39.4	51.5	19.0	36.9	
36710060	44		7.55	13.9	38.8	51.5	18.4	35.8	
		Mean	7.502	13.96	37.90	50.54	18.64	36.90	
		SD	0.520	0.92	2.75	1.13	0.29	0.70	

APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

MALES			
	Group	į	PT
36710012 36710014 36710016 36710018 36710020		866 880 941 970 Mean 926.6 SD 50.9	16.2 16.3 15.5 16.2 0.50
36710052 36710054 36710056 36710058 36710060	36710052 4 36710054 4 36710056 4 36710058 4 36710060 4 Mean	i i	17.7 18.4 17.0 18.0 16.4 17.50 0.80

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

MALES

Animal Number	dnox9		WBC 10^9/1	NEU %	LYM	MOM #	 	BAS	LUC	
36710012	1		8.99	8.6	86.7	3.0	6 C			
36710014	П		10.81	0.6	86.8	2.2	0 0		. 0	
36710016	П		12.68	13.5	81.7	2.4			n o	
36710018	₽		11.88	22.7	70.9	2.0	2.7	1 - 0		
36710020			8.56	14.5	70°.	3.7	- 2		· ·	
		Mean	10.584	13.66	81.20	2.84	1.42		0.0	
		SD	1.786	5.70	6.51	0.59	0.75	0.05	0.13	
36710052			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***************************************						
100000000000000000000000000000000000000	ŗ,		77.77	45.Y	67.7	œ. m	1.4	0.2	ه. 0	
36/10054	4		5.47	11.5	83.4	3.2	0.8	0.1	- C	
36710056	4		9.70	5.9	60,00	0	, ,	10		
36710058	4		8.90	7.1	28.	, ,	i C	7.0	0 0	
36710060	41		8.36	8,2	 	i m) , , –	7	7 œ	
		Mean	8.920	11.72	83.02	3.6	α 1 C		. 0	
		SD	2.418	8.20	8.86	0.55	0.24	0.05	, C	
									,	

APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

FEMALES

Animal Number	Group	RBC 10~12/1	HGB g/dl	HCT	MCV #1	MCH	MCHC	
36710011						ρ. 	Ta /6	
36710012	٠٠,	F	15.1	41.4	52.8	, o t		1
0 1 0 0 1 0 0	-1 .	7.54	14.4	40.0	0.00) (36.5	
30/10012	rt	7.39	14.4	0 0	0 (⊥.⊌. ⊥.	36.1	
36710017	Н	ر م	* 0		52.6	19.5	37.1	
36710019	e-ri	. r	7 .	(3.5) (1.5)	51.8	18.4	L L L	
	ı		14.1	93.00 0.00	53.2	۳ ه		
		Mean /.532	14.40	20 70) · } ·	20.00	
		SD 0.201) ,	24.08	19.12	36.28	
-)			? •	1.05	0.54	0.43	0.58	
36710051	4	, m					; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
36710053	. 6) i	13.4	36.8	53.9	19.7	30	!
11001196		0.04	13.2	36.3	C C		0 1	
SCOOT AS	4 '	7.26	14.0	300) (i	18.5	36.4	
36710057	ব	7 41	, c	0.00	53.0	19.3	36.4	
36710059	•	~ \	1.4.	39.5	ຕ.ຕິ	C 05 -		
0000	7*	6.95	12.8	, A.		2	35.0	
		Mean 7.058	C 14) (C	07.4	18.5	35.2	
)))	3/.50	53.12	19.16	000	
		SD 0.263	0.55	1.43	c c		20.00	
					* 0.0	0.44	0°0	

APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

Animal	Group	ш	TTa	E- C.
Number			10~9/1	
36710011		 	87.1	16.4
36710013	г	01	916	16.7
36710015	г	51	964	17.1
36710017	Н	w	872	17.1
36710019	Н		848	17.6
		Mean	894.2	16.98
		SD 4	46.1	0.45
36710051	4	; () 1 1 1 1 1 1 1	976	16.5
36710053	4	• '	756	15.8
36710055	4,	J'	937	16.3
36710057	4	51	901	16.4
36710059	4.	•	794	16.9
		Mean	872.8	16.38
		C V	1 46	0.40

H. 4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 7.2 - Haematology - At the end of recovery - Individual data

I										
Animal	dnozb		WBC 10^9/1	NEU %	LYM	MOM %	S Oa	BAS	1.0C	
36710013 36710013 36710015 36710017 36710019 36710051 36710053 36710055 36710055 36710055	пепеп фффф	Mean SD SD Mean SD	11.54 8.23 7.10 8.31 8.31 8.10 8.10 7.70 8.29 7.73 7.73 0.738	9.0 7.0 7.7 7.7 7.0 1.0 7.0 7.3 7.0 7.0 7.0 7.0 8.0 7.0 8.0 7.0 7.0 8.0 7.0 7.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 W 4 W W O O W W W O O O O O O O O O	1.3 1.4 1.7 1.0 1.6 0.4 6 0.7 1.0 1.0 1.0 0.2 1.0	0.3 0.2 0.2 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.0	2.11111100 0100110 2.111100 0100110 2.1000110 000110	

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data

Animal Group Number								ŀ	11 10	
36710002	AP U/	AP U/1	ALT U/1	AST U/1	GGT U/1	BILT mg/dl	CHOL mg/dl	TK1 mg/d1	mg/dl	!
36710002	# 1	1		1	i 	11110	101	34.0	100.5	
	21	٠. د ا	30.5	75.2	01.0	- C	1 11	0 00	127.3	
10000 rtur	33	3.3	36.2	92.2	0.10	٠. د د	ם ני תיי) ·	10	
1 1 1000 T 100	000		28.6	86.6	0.20	0.11	65.2	70.4	0.0	
36710006	44 (4 5		7 0 7	0.20	0.13	93.0	45.5	o.	
36710008 1	7	9.1.	21.5			0.12	64.6	34.5	114.5	
36710010 1	26	39.5	ئ. ــــــــــــــــــــــــــــــــــــ	0.77	000	0	74.32	37.86	106.58	
		57.92	31.56	81.10	0.164	0.015	11.92	9.19	14.32	
	SD 40	00	10.1	1			,		# 1	l i
					00 0	60.0	42.6	33.7	123.4	
36710022 2	7	יי מיני	դ. (* C	00.0	0.07	56.7	15.0	113.6	
	22	27.1	20.5	0.60			ا الم	24.2	149.3	
	2.	33.5	29.0	, s.	00.0	7 0		0	7.66	
	2,	64.3	29.7	72.3	0.00	01.0	r (, ,	0.00	
	16	70.00	43.0	88.8	0.70	60.0	52.7	33.1	, set	
36/10030 2		, 0	**************************************	75.28	0.200	0.074	49.16	27.18	121.18	
		0.00	יי רי יי רי יי רי))	0.308	0.032	9.84	7.78	18.14	
		υ.α4	7.10			1 1 1 1 1 1 1 1 1				[
1				06.1	00 0	0.04	52.3	16.7	114.7	
36710032 3		/	7.07	7 u c		20.0	65.4	17.6	109.8	
36710034 3		53.6	253.4	1,00,	9 6		0 0	17.8	133.2	
36710036		59.8	73.5	102.5	0.0	900) (117.0	
	m	01.5	43.9	89.0	00.0	80.0	3 [†] 1	9 6	120.0	
		a 0.	229.0	166.8	0.00	60.0	54.1	50.3	7.77	
36710040 3	!	9.60	00.00	127.90	0.020	0.076	57.02	18.50	119.38	
	Mean 3	4.38	103.26	49.84	0.045	0.022	7.18	1.61	8.92	!
	1	1 1 1 1 1 1 1				000	α 	39,4	125.3	
36710042 4		60.4	117.9	140.5	0.00) (1 L	ر ابر ابر	
36710044		39.3	82.1	120.0	0.10	0.20	יים סו) c		
	7	10.8	84.0	4.66	0.10	0.13	6.5	4.0) · · · · ·	
	. (r	0 0	8	107.3	0,00	0.17	85.2	38.0	C OTT	
	· · · · · ·	5 C C C C C C C C C C C C C C C C C C C) -) (184.3	0.10	0.22	78.5	34.0	122.0	
36710050 4		200.0) ()) ()	0.001		0.190	78,52	36.24	124.20	
	Mean 3	341.82	100.02	יים ר סטיים ר	, d	0 041	7.62	2.37	7.26	
		51.48	33.16	رد. س ره. س) 	1 1 1 1 1 1 1 1 1 1		1		

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data

ST10002 1 43.2 0.31 92.7 8.3 2.51 144.2 4.12 ST10004 1 41.2 0.32 91.6 93.3 91.6 91.6 92.7 145.0 3.77 ST10004 1 41.2 0.32 94.4 8.7 2.66 144.1 3.77 ST10004 1 45.9 0.35 92.3 8.7 2.66 144.1 3.77 ST10010 1 45.4 0.35 92.9 8.54 2.62 144.1 3.86 ST1002 2 43.3 0.36 92.8 8.54 2.64 144.1 3.87 ST1002 2 43.3 0.36 94.8 8.7 2.67 144.1 3.87 ST1002 2 43.9 0.36 94.4 8.3 2.74 144.1 3.77 ST1002 2 43.9 0.36 94.4 8.3 2.75 144.1 3.73 ST1002 2 </th <th>Animal Number</th> <th>dnozb</th> <th>:</th> <th>UREA mg/dl</th> <th>CREA mg/dl</th> <th>CL mmol/l</th> <th>PHOS mg/dl</th> <th>CA mmo1/1</th> <th>Na mmol/1</th> <th>K mmo1/1</th>	Animal Number	dnozb	:	UREA mg/dl	CREA mg/dl	CL mmol/l	PHOS mg/dl	CA mmo1/1	Na mmol/1	K mmo1/1
1 Mean 41.2 0.32 91.8 9.0 2.62 145.0 1 Mean 45.9 0.43 92.3 8.4 2.66 144.1 2 55.9 0.43 92.3 8.4 2.65 144.1 SD 6.14 0.053 1.00 0.33 92.8 8.7 2.67 142.5 SD 6.14 0.03 93.7 8.6 0.077 0.54 SD 7.3 0.30 93.7 8.6 2.63 145.1 SD 7.4 8 0.03 93.7 8.6 2.63 145.1 SD 7.5 0.33 93.7 8.6 2.63 145.1 SD 8.5 0.03 93.7 8.6 2.63 145.1 SD 9.0 0.33 93.7 8.6 2.63 145.1 SD 9.0 0.33 93.7 8.6 1.88 SD 9.0 0.34 99.0 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.	26710002	1		43.2	0.31	92.7	8.3	2.51	144.2	4.12
1 Mean 45.9 0.33 8.3 2.65 143.5 144.1 1 44.1 1 45.9 0.33 0.33 8.3 2.65 144.1 1 44.1 1 45.9 0.33 0.33 92.90 8.54 2.624 144.18 144.1 1 1	20001100	4 -		41.2	0.32	91.8	0.6	2.62	145.0	3.77
Mean 45.9 0.43 92.3 8.4 2.66 144.1	36710004 0001100	-1 ←		41.4	0.30	93.3	 	2.72	143.5	3.92
Mean 45.48 0.35 94.4 8.7 2.61 144.18	3077000	⊣ ←			0.43	92.3	8.4	2.66	144.1	3.70
Mean 45.48 0.336 92.90 8.54 2.624 144.18 0.55 2	36/10008	-}		45.00	0.32	94.4	7.8	2.61	144.1	3.86
SD 6.14 0.053 1.00 0.33 0.077 0.54 2 48.3 0.36 94.8 8.7 2.67 142.5 2 48.9 0.30 94.8 8.3 2.71 142.5 2 46.0 0.29 94.4 8.1 2.55 144.1 2 52.3 0.32 93.7 8.6 2.63 146.1 2 52.3 0.32 93.7 8.6 2.63 143.1 2 52.3 0.32 93.5 9.0 2.63 143.1 3 61.0 0.33 93.2 7.4 2.63 143.0 3 50.0 0.27 94.4 7.6 2.62 148.9 3 50.0 0.27 94.4 7.6 2.62 150.3 3 50.0 0.27 94.4 7.6 2.62 150.3 3 50.0 0.31 92.3 8.0 2.62 151.0 3 51.3 0.37 94.1 8.0 2.58 151.0 3 51.3 0.37 94.1 8.0 2.56 148.9 3 51.3 0.37 94.1 8.0 2.56 148.9 4 64.3 0.27 95.6 6.4 2.52 145.1 4 64.3 0.27 95.6 6.4 2.56 146.5 5 4 70.9 0.29 95.6 7.4 2.48 146.1 5 5 6 7.7 2.66 146.5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	36/10010	⊣	Mo	47.48	0.336	92.90	8.54	2.624	144.18	3.874
2 48.9 0.36 92.8 8.7 2.67 142.5 2 48.9 0.30 94.8 8.3 2.71 142.2 2 48.9 0.29 94.4 8.1 2.55 146.1 2 52.3 0.33 93.7 8.6 2.63 146.1 2 52.3 0.32 93.60 8.56 2.63 143.1 3 61.0 0.33 92.3 90.0 2.62 143.1 3 61.0 0.33 93.2 7.4 2.63 148.9 3 52.7 0.33 93.2 7.4 2.58 148.9 3 52.0 0.27 94.4 7.6 2.62 151.9 3 Mean 52.62 0.316 93.8 7.9 2.62 151.0 5 50.0 0.37 94.1 8.0 2.58 151.0 5 50.0 0.37 94.1 8.0 2.58 151.0 5 50.0 0.37 94.1 8.0 2.58 151.0 5 64.3 0.27 94.0 6.3 2.54 145.1 5 65.9 0.37 94.0 6.3 2.54 145.1 5 7 11.1 0.32 94.0 6.3 2.54 145.1 5 7 11.1 0.32 94.0 6.8 2.14 146.1 5 7 146.1 0.28 94.9 6.8 8 2.31 1.76 146.10 5 7 146.1 0.28 94.9 6.8 8 94.9 6.8 8 2.37 0.88 7 5 7 10.26 0.33 95.1 6.8 94.9 6.8 8 2.31 1.76 146.10			SD	6.14	0.053	1.00	0.33	0.077	0.54	0.161
2 48.9 0.36 94.8 8.1 2.71 142.2 2 48.9 0.29 94.4 8.1 2.55 141.1 2 46.0 0.33 93.7 8.6 2.63 146.1 2 52.3 0.33 93.7 8.6 2.636 143.1 3 50.0 0.28 1.05 0.34 0.060 1.88 3 48.1 0.33 93.2 7.4 2.58 143.0 3 48.1 0.31 92.3 8.0 2.62 153.9 3 52.7 0.30 94.4 7.6 2.62 148.9 3 52.7 0.30 92.3 8.0 2.54 148.9 3 64.3 0.27 94.4 7.6 2.52 148.9 3 64.3 0.27 94.1 8.0 2.58 151.0 3 7.9 2.62 151.9 3 7.9 2.62 147.3 4 64.3 0.27 94.4 7.0 2.56 145.5 4 64.1 0.28 94.4 7.0 2.56 145.5 5 6.9 0.33 95.1 6.3 2.54 145.5 5 7.9 7.9 2.54 145.1 5 7.9 6.9 95.6 6.4 7.0 2.56 145.5 5 7.9 1.1 0.28 94.4 7.0 2.56 145.5 5 7.9 1.1 0.29 95.1 6.3 1.76 146.10 5 7.9 0.29 94.94 6.68 2.31 1.76 146.10		1	1111111111			1	; ; ; ; ; ; ; ; ; ;		142 5	3,73
2 48.9 0.30 94.8 8.3 2.71 141.1 2 47.9 0.29 94.4 8.1 2.55 146.1 2 46.0 0.33 93.7 8.6 2.63 146.1 2 52.3 0.33 92.3 9.0 2.62 143.1 2 52.3 0.33 92.3 9.0 2.62 143.1 3 61.0 0.33 93.2 7.4 2.58 149.2 3 50.0 0.27 94.4 7.6 2.62 150.3 3 48.1 0.31 93.8 7.9 2.62 151.9 3 52.7 0.30 93.8 7.9 2.62 151.9 3 52.1 0.37 94.1 8.0 2.58 151.0 3 Mean 52.62 0.316 93.56 7.78 2.612 150.26 5D 4.98 0.037 0.83 0.27 147.3 4 64.1 0.28 94.4 7.0 2.56 145.1 4 64.1 0.28 94.4 7.0 2.56 145.5 5D 4.0 0.29 95.6 7.4 2.51 4 64.1 0.28 94.94 6.68 2.312 146.5 5D 5.0 0.30 0.33 95.1 6.3 1.76 146.1 5D 5.0 0.33 95.1 6.8 2.312 146.1	36710022	2		43.3	0.36	87.8		, ,	77.0	500
2 47.9 0.29 94.4 8.1 2.55 141.1 2 5.55 141.1 2 6.0 0.33 93.7 8.6 2.63 146.1 2 5.23 0.32 93.60 8.56 2.635 143.1 2 5.23 0.32 93.60 8.56 2.636 143.0 3 3.35 0.028 1.05 0.34 0.060 1.88 3 48.1 0.28 94.4 7.6 2.62 150.3 3 48.1 0.31 92.3 8.0 2.62 150.3 3 5.0 0.37 94.4 7.6 2.62 150.3 5.1 0.30 93.8 7.9 2.62 151.9 5.2 0.316 93.56 7.78 2.612 150.26 5.0 0.37 94.1 8.0 2.58 151.0 5.0 0.37 94.1 8.0 2.58 151.0 5.0 0.37 94.1 8.0 2.58 151.0 5.0 0.37 94.1 8.0 2.58 151.0 5.0 0.37 94.1 8.0 2.58 151.0 5.0 0.37 94.1 8.0 2.58 151.0 5.0 0.37 94.1 8.0 2.58 151.0 5.0 0.37 94.1 8.0 2.58 151.0 5.0 0.37 94.1 8.0 2.58 145.1 5.0 0.37 0.33 95.6 6.4 2.22 145.1 5.0 0.27 0.29 95.6 6.3 2.312 146.1 5.0 0.33 95.1 6.3 1.76 146.1 5.0 0.33 95.1 6.3 1.76 0.357 0.86	36710024	2		48.9	0.30	94.8	æ. æ.	7.77	7.75	36
Mean 46.0 0.33 93.7 8.6 2.63 146.1 143.1 22 82.3 92.3 92.3 92.0 2.662 143.1 14	3671000	. 0		47.9	0.29	94.4	œ.	2.55	T - T - T	0 100
Mean 47.68 0.33 92.3 9.0 2.62 143.1 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9077076	1 ^		46.0	0.33	93.7	8.0	2.63	146.1	3.77
Mean 47.68 0.322 93.60 8.56 2.636 143.00 1.88 5.5 5.5 5.5 5.0 1.88 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	00017000	1 (0.33	92.3	0.6	2.62	143.1	3.62
3 5.35 0.028 1.05 0.34 0.060 1.88 1.88 5.0 0.33 93.2 7.4 2.58 149.2 150.3 93.2 7.4 2.58 149.2 150.3 93.2 7.4 2.62 150.3 150.3 93.8 7.9 2.62 150.3 150.3 93.8 7.9 2.62 151.9 151.0 93.8 7.9 2.62 151.9 151.0 93.8 7.9 2.62 151.9 151.0 93.6 7.9 2.62 151.9 151.0 93.5 7.9 2.62 151.9 151.0 93.5 7.9 2.62 151.9 151.0 93.5 7.9 2.62 151.0 93.5 7.9 2.62 151.0 93.5 7.9 2.62 151.0 93.5 7.9 2.61 151.0 93.5 7.9 2.54 147.3 1.25 94.0 6.3 2.54 145.1 94.5 94.0 6.3 2.54 145.1 94.5 94.0 6.3 2.54 146.5 94.0 6.3 3 94.4 6.68 2.312 146.5 94.94 6.68 2.312 146.1 94.0 94.94 6.68 2.312 146.1 94.0 94.94 6.68 2.312 146.1 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0	36/1000	J	MedM	47.68	0.322	93.60	8.56	2.636	143.00	3.720
3 61.0 0.33 93.2 7.4 2.58 149.2 50.0 3.3 94.4 7.6 2.62 150.3 3.5 50.0 0.27 94.4 7.6 2.62 150.3 3.8 52.7 0.30 92.3 8.0 2.66 148.9 52.7 0.30 93.8 7.9 2.62 151.9 51.9 51.3 0.37 94.1 8.0 2.58 151.0 51.2 5.0 0.316 93.56 7.78 2.612 150.26 51.0 0.37 0.83 0.27 0.033 1.25 147.3 64.3 0.27 95.6 6.4 2.22 147.3 145.1 445.5 64.1 0.28 94.4 7.0 2.56 145.1 445.5 66.9 0.29 95.6 7.4 6.68 2.312 146.10 146.10 5.0 0.33 94.94 6.68 2.312 146.10 146.10 5.0 0.33 94.94 6.68 2.312 146.10 146.10 1.25 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.3			S	3,35	0.028	1.05	0.34	0.060	1.88	0.072
3 50.0 0.27 94.4 7.6 2.62 150.3 148.9 50.0 0.31 92.3 8.0 2.66 148.9 148.9 52.7 0.30 93.8 7.9 2.65 151.9 151.9 52.7 0.30 93.8 7.9 2.56 151.9 151.9 52.7 0.316 93.56 7.78 2.612 150.26 150.26 52 151.0 0.33 94.0 6.3 2.54 145.1 445.5 64.1 0.28 94.4 7.0 2.56 145.1 445.5 64.1 0.28 94.94 6.68 2.312 146.1 146.1 146.1 0.28 94.94 6.68 2.312 146.1 146.1 146.1 0.28 94.94 6.68 2.312 146.1 1					88 0		7.4	2.58	149.2	4.01
3 48.1 0.31 92.3 8.0 2.66 148.9 3 52.7 0.30 93.8 7.9 2.62 151.9 51.3 0.37 94.1 8.0 2.58 151.0 51.3 0.37 94.1 17.78 2.612 150.26 5D 4.98 0.27 0.83 0.27 0.033 1.25 4 64.1 0.27 95.6 6.4 2.22 147.3 64.3 0.27 95.6 6.4 2.22 147.3 64.1 0.28 94.4 7.0 2.56 145.1 66.9 0.33 95.1 6.3 1.76 146.1 66.9 0.29 94.9 6.68 2.312 146.1 67.0 6.3 3.42 0.026 0.72 0.50 0.337 0.86	36710032	ካ၊				4 4 4	7.6	2.62	150.3	3.97
3 52.7 0.30 93.8 7.9 2.62 151.9 51.0 0.37 0.31 93.56 7.78 2.58 151.0 151.0 0.37 0.37 0.37 0.83 0.27 0.033 1.25 150.26 0.316 93.56 0.27 0.033 1.25 150.26 0.37 0.83 0.27 0.033 1.25 147.3 0.37 0.38 0.27 0.033 1.25 145.1 0.38 0.29 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.3	36710034	P) I		0.0		, c) C	2.66	148.9	4.14
3 51.7 0.37 94.1 8.0 2.58 151.0 51.25 SD 4.98 0.37 93.56 7.78 2.612 150.26 SD 4.98 0.037 0.83 0.27 0.033 1.25 1.25 SD 4.98 0.037 0.83 0.27 0.033 1.25 147.3 4 64.1 0.28 94.4 7.0 2.56 145.5 46.5 66.9 0.29 95.6 6.8 2.312 146.1 146.5 SD 4.4 6.68 2.312 146.1 146.	36710036	י לים		2† r 10 (1 CO	0.00	, r	2.62	151.9	3.82
3 Mean 52.62 0.37 7.78 2.612 150.26 SD 4.98 0.037 0.83 0.27 0.033 1.25 4 64.3 0.27 95.6 6.4 2.22 147.3 4 64.1 0.28 94.0 6.3 2.54 145.1 4 70.9 0.28 94.94 6.68 2.312 146.10 SD 3.342 0.026 0.72 0.50 0.337 0.86	36710038	m		7.7.	00.00	0 T	. 00	2.58	151.0	4.04
Again 32.02 SD 4.98 0.037 0.83 0.27 0.033 1.25 4 64.3 0.27 95.6 6.4 2.22 147.3 4 71.1 0.32 94.0 6.3 2.54 145.1 4 64.1 0.28 94.4 7.0 2.56 146.5 4 70.9 0.29 95.6 7.4 2.48 146.5 Mean 67.46 0.298 94.94 6.68 2.312 146.10 SD 3.42 0.026 0.72 0.50 0.337 0.86	36710040	m		ა. ი	0.0 41 71	ע פ ה נה ה א	7.78	2.612	150.26	3.996
4 64.3 0.27 95.6 6.4 2.22 147.3 4 71.1 0.28 94.4 7.0 2.56 145.5 4 64.1 0.28 94.4 7.0 2.56 145.5 4 66.9 0.29 95.6 7.4 2.48 146.5 95.1 6.3 1.76 146.1 80.33 95.1 6.68 2.312 146.10 80.32 0.32 0.32 0.33 0.86			SD	4.98	0.037	0.83	0.27	0.033	1.25	0.117
4 71.1 0.32 94.0 6.3 2.54 145.1 6.2 64.1 0.28 94.4 7.0 2.56 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 146.5 146.5 146.5 146.5 146.1 1.76 146.1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			64 3	0.27	95.6	6.4	2.22	147.3	4.46
4 64.1 0.28 94.4 7.0 2.56 145.5 4 70.9 0.29 95.6 7.4 2.48 146.5 4 66.9 0.33 95.1 6.3 1.76 146.1 Mean 67.46 0.298 94.94 6.68 2.312 146.10 SD 3.42 0.026 0.72 0.50 0.337 0.86	36/10042	a, 2) . 	3.7	94-0	ю	2.54	145.1	4.13
4 70.9 0.29 95.6 7.4 2.48 146.5 4 66.9 0.33 95.1 6.3 1.76 146.1 4 Mean 67.46 0.298 94.94 6.68 2.312 146.10 50 3.42 0.026 0.72 0.50 0.337 0.86	36/10044	1, 2		1	. c	94.4	7.0	2.56	145.5	4.15
4 66.9 0.33 95.1 6.3 1.76 146.1 4 Mean 67.46 0.298 94.94 6.68 2.312 146.10 SD 3.42 0.026 0.72 0.50 0.337 0.86	36/10046	ar s		1 0 1 0	0 0	T. O	7.4	2.48	146.5	4.18
4 Mean 67.46 0.298 94.94 6.68 2.312 146.10 sp. 3.42 0.026 0.72 0.50 0.337 0.86	36710048	3r' S		י ס כי ע		95.1	6.3	1.76	146.1	5.52
3.42 0.026 0.72 0.50 0.337 0.86	36/10050	r	200	7.00	800.0	94.94	6.68	2.312	146.10	4.488
			Hear.	0 t 4 t t	0.026	0.72	0.50	0.337	0.86	0.592

APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data

Animal Number	Group	PROT g/dl	ALB g/dl	GLO 9/dl	AGR
			4,0	2.4	1.7
36/10002	ન .			2,53	1.6
36710004	.⊶	e.s	o «) LI	9.
36710006	e-d	6.5	9.4	0,7	٠ ١٠ -
36710008	-	6.7	4.1	9.7	, i
26710010		6.2	თ. რ	2.3	· · ·
9	1		4.00	2.46	m
		SD 0.18	0.07	0.11	50.0
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3.9	2.1	o) . H
00110022	4 (, o	3.8	2.1	. œ
36/10024	7 1 +) L	, (M	٠, ۲	ნ. [
36710026	7	٥.٠			1.7
36710028	ଧ	0.1	ຫຸເ		L -
36710030	7	თ. თ.	3.7	2:7	000
			3.78	2.12	n (°
		SD	0.08	0.15	
		1	9.00 0.00	2.5	1.6
36/10032	? •		ω (**	2.2	1.7
36710034	m	٠ •	o (0 0	en .
36710036	ന	6.2	D. (4.0	2 1
36710038	m	6.2	4.2	0.2	1 0
36710040	ო	6.0	4.0	2.0	0.5
			3.08	2.18	# C T
		SD 0.17	0.15	0.20	0.21
		1	3.3	1.4	2.4
7F00T/99	r	. \	7	2.0	₽.8
36710044	4	ດ້ຳ) (m 'C'
36710046	4	.s.	ית		٦ (
36710048	4	6.2	n (n) o
36710050	4	4.9	N (~ 0 - 1 - 1	1 5
		Mean 5.40	3.50		0.10 8.00
			0.27	O. 4.	

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data

Animal Number	Group		AP U/1	ALT U/1	AST U/l	GGT U/1	BILT mg/dl	CHOL mg/dl	TRI mg/dl	GLU mg/dl
36710001		t = = = = = = = = = = = = = = = = = = =	191.9	28.5	72.7	4.30	0.10	78.4	25.2	108.6
36710003	Н		191.8	29.0	66.1	0.40	0.09	76.3	36.1	119.0
36710005	-		227.5	32.8	73.8	0.10	0.06	66.8	22.3	115.5
36710007	ч		250.0	35.6	92.6	1.30	0.10	81.6	38.2	0.66
36710009	Н		178.0	29.8	99.2	0.50	0.10	9.66	34.7	115.8
		ď	207.84	31.14	80.88	1.320	0.000	80.54	31.30	111.58
		SD	29.86	3.00	14.22	1.724	0.017	12.00	% O.8	٠٤٠/
36710021	2		178.7	30.5	72.3	1.90	0.07	82.6	28.0	87.8
36710023	7		156.9	23.9	62.7	1.10	90.0	62.3	19.5	119.8
36710025	71		155.8	27.2	85.4	1.40	0.07	72.0	37.3	100.3
36710029	2		211.1	30.5	71.8	1.50	0.05	65.4	19.6	114.7
		Mean	175.63	28.03	73.05	1.475	0.063	70.58	26.10	105.65
		SD	25.89	3.16	9.34	0.330	0.010	86.8	8.46	14.48
36710031	i 	: 	234.5	40.0	73.7	0.70	0.06	6.88	29.7	106.8
36710033	ო		216.3	44.0	77.8	1.30	0.02	65.6	23.9	119.9
36710035	ന		211.0	29.5	80.1	0.80	0.03	69.5	33.8	114.7
36710037	m		267.7	42.7	86.9	0.70	0.04	62.9	26.5	111.1
36710039	m		259.3	67.3	102.5	0.50	0.03	69.8	24.7	132.8
		Mean	237.76	44.64	84.20	0.800	0.036	71.34	27.72	117,06
		SD	25.24	13,94	11.29	0.300	0.015	10.23	4.06	10.03
36710041	, , , , , , , , , , , , , , , , , , ,	 	280.5	56.4	986	4.80	0.10	80.8	38.8	125.3
36710043	4,		224.6	43.1	89.2	5.00	0.05	58.3	22.9	130.2
36710045	4		144.8	24.2	67.0	0.80	0.04	76.1	30.1	142.5
36710047	4		246.5	31.7	74.0	0.10	0.06	91.2	25.1	136.1
36710049	d.		205.1	38.9	82.7	1.00	0.05	70.9	36.1	134.9
		Mean	220.30	38.86	82.30	2.340	0.060	75.46	30.60	133.80
		ç	12 CH	21 01	.,	70.0	,,,,,	7.5	,	r .

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data

Animal Number	Group		UREA mg/dl	CREA mg/dl	CL mmol/l	PHOS mg/dl	CA mmo1/1	Na mmol/1	Ж mmo1/1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			94.3	7.3	2.65	144.4	3.46
36710001	,1		7.14	1.0) (6 67 5	n e e
26710003	•		47.0	0.41	93.0	7	7.07) () (
10000	۱ -		c C	0.50	95.2	7.3	2.60	143.7	3.32
SOUT/OF	٠,) LI	0.7	ር ጉ		2.64	143.6	4.06
36710007	- -1 1) ·	0 0	0 0	7.2	2.57	144.7	4.31
36710009	-		40.8		, ,		2 14	143.94	3.700
		Mean SD	48.90 5.99	0.042	04.0 0.00	0.37	0.032	65.0	0.454
1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111			1 	7.2	2.75	142.9	3,43
36710021	N		0.00	7 6) ·	. 1.	2 75	142.5	3.58
36710023	73		46.0	0.38	20 T	n (, ,	0 0 0	2.70
36710025	2		46.2	0.47	95.4	٧.٠	00.7) :) : 	
00001190	0		46.7	0.36	97.1	8.0	2.64	144.5	5.7±
30/10029	1	MedM	47 38	0.410	95.58	7.51	2.705	143.45	3,605
		SD	2,17	0.050	1.19	0.36	0.054	0.91	0.131
1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		37. 5
15001635	κ,		47.0	0.45	94.5	6.4	7.81	1.041	2 0
0071000	· (*		0.83	0.45	96.2	7.0	2.64	146.0	3.12
30/1005	י ני		0 C	0 40	97.4	o.	2.50	146.8	3.10
36/10035	n (, c	0.4	0 10	7.1	2.49	145.4	3.42
36/1003/	ກ (, 0	1	י ע ע ע	7.4	2.51	145.0	3.17
36710039	m	:	2, . 2, . 0 (H (* * * * * * * * * * * * * * * * * * *	, u	6 97	2.590	145.66	3.434
		Mean SD	4y.30	0.024	₩	0.37	0.137	0.75	0.304
	1 1 1		61 0	0.36	0.00	6.5	2.58	146.3	3.42
36/10041	31 1			, c	4	7.2	2.67	143.0	3.88
36/10043	a * *			, c	0.4	00	2.79	144.3	3.83
36710045	7"		1.10.1	200		, r	2.71	142.7	3,45
36710047	47		0.00	0.00) e) r	7 8.7	142.1	3.18
36710049	4		75.3	44.0	9 0	4,6	2.0	143.68	3.552
		Mean	60.84	0.380	00.0		.00.0	1 67	0.296
		SD	9.13	0.035	F. C3	75.0	1		

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 8.1 - Clinical chemistry - At the end of treatment - Individual data

Animal G Number 36710001 36710003					
36710001 36710003	dnozg	PROT g/dl	AlB g/dl	GLO g/dl	AGN
36710001 36710003	1				- 0
36710003	-	6.1	₹, 4,	2.0	1 -
36710003	4 .		4.2	2.0	1 .
	⊢ 1	7:0		2.1	თ, ⊏
36710005	,1	₹.5	o ,	u C	1,6
30.10007		6.6	4.1	2.	, c
0001100		m	4.4	э. Э	
36/1000%	4	70 y	4.16	2.10	00.7
		SD 0.21	0.15	0.23	0.25
\$ 1		\$		11	2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·	6.0	4.0	n :	~ a
36/10021	1 (α	4.4	2.4	o .c
36/10023	7		<i>م</i>	2.0	7.7
36710025	2	ก) (2.2	1.8
36710029	2	6.2	, ,	0 03	08.1
			4. L8) (C	80
		SD 0.27	0.21) T.O	1
1	1 []	- 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 0	2.1
1000 1100	۲.	6,8	4.6	7.4	: o
10001			4.4	2.3	n (
36710033	r} i		6.	2.3	
36710035	m	φ ₁) u	2.0	2.3
36710037	ന	o.5	n (ა. ⊤
0,000	c	6.4	4.2	11 (10 6
SCOOT 65	0		4.40	2.20	
		SD 0.16	0.16	0.12	9 T • O
	1		[. [
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			4.2	2.0	1.7
36/10041	.		4.6	1.8	9.7
36710043	4	T***	, v	2.0	2.3
36710045	4,	ა. ა	, th. z	· o	2.3
36710047	ታ	e.9	7. 7) C	2.5
00000		ത്	4.2	- 1) n
36/10049	3*		4.38	1.88	40.7
		11can 0.23	0.18	0.13	0.18
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\$1

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data

11	1									
Animal Number	Group		AP U/1	ALT U/1	AST U/1	GGT U/1	BILT mg/dl	CHOL mg/dl	TRI mg/dl	GLU mg/dl
		145 111111	202 3	34.2	1 0 th	0.20	0.10	70.5	47.1	115.5
30/10017	1 1		5.000	1 6			0 10	0.7	47.5	118.5
36710014	H		7.887	3.1.€	56.5	7.17) i			100
36710016			202.2	32.0	63.2	0.30	0.15	87.4	47.7	177.3
9775010	۱		198 1	33.2	62.8	1.70	0.14	67.5	40.1	125.1
0001100	4 =		200	1 6	62.7	1.00	0.15	72.8	36.3	116.7
36/10020	-1	1	2.01.0	ο ο α	61.48	1.120	0.128	75.56	42,64	119.62
		in an	210.40) (-	. o	0.936	0.026	7.98	4.75	4.00
		a S	90.17	r 0 - 1	7)	1			
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.00	0.13	102.0	29.9	128.9
2001/00	ŗ			. 40	ο 1 τ	06 0	0.34	145.2	17.2	124.7
36/10054	# 1				7 7	7.0	0.24	155.7	21.7	133.5
36/IN056	1 r ·		1.001) tu	0 0		0 711	0	151.1
36710058	7		323.0	0.70	n	0 0	3 6			, co
36710060	び		342.8	37.0	55.7	0.80	0.⊥3	14. 10.	,	7
		Mean	305.44	35,18	60.84	0.960	0.198	132.76	23.54	144.10
		CS	33.60	10.68	8.69	0.472	0.091	22.36	5.64	23.60

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data

MALES		1 	 	1 1 1 1 1 1 1 1 1 1						
Animal Number	Group		UREA mg/dl	CREA mg/dl	CL mmol/l	PHOS mg/dl	CA mmo1/1	mmol/1	mmo1/1	! ! ! !
36710012 36710014 36710016 36710018 36710020 36710054 36710054 36710058 36710058	ਜਜਜਜਜ ਰਾਚਾਰਾਰਾ	Mean SD Mean Mean Mean SD	35.8 47.0 39.0 39.0 44.52 44.52 6.76 71.3 60.9 53.1 60.9	0.30 0.32 0.34 0.348 0.0348 0.023 0.23 0.23 0.25 0.25	92.7 93.3 93.0 93.7 94.9 94.9 95.3 94.1 94.1 1.44	88 8 8	2.70 2.77 2.51 2.65 2.65 2.65 0.115 2.50 2.72 2.72 2.72 2.72 2.72 2.72 2.72	147.5 147.5 147.0 147.0 147.7 147.2 0.53 145.4 145.4 145.2 145.2 145.2 145.2	4.01 4.16 4.45 4.62 4.15 0.249 4.37 4.33 5.61 6.444 6.490	
		SD	7.23	120.0	r	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

. 4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data

MALES						
Animal	dnoxb	PROT g/dl	ALB g/dl	GLO g/dl	AGR	1
1	HELEHT 40000	Mean SD Mean SD	88.00 9.0.4 9.0.0 9.0.4 9.0.0 9.0.4 9.0.0 9.	2.5 2.5 2.5 2.5 0.18 1.9 1.9 0.19 0.19	1.6 1.6 1.3 1.3 1.5 0.13 0.13 0.22 0.12	

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data

FEMALES				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	****		1				
Animal	Group		4.P 3/1	ALT U/1	AST U/1	GGT U/1	BILT mg/dl	CHOL mg/dl	TRI mg/dl	GLU mg/dl 	
Taguna	1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1					α κ. 7	9,76	
	,	,	171.3	30.0	86,3	2.10	0.17	100		8 101	
36/10011	-1	. •) [((0 90	70.5	0.20	0.17	0.//	O . I .	0 0	
36710013	1	•	7.257		1	1 20	0.16	77.2	36.3	7.501	
36710015	П	. •	179.7	7.07	- t			9.9	46.0	104.1	
36710017	Н	•	158.0	27.1	74.2	1.0	, c	48.5	50.6	112.7	
0110010	_	•	170.3	22.2	74.0	7.1		, c	D 72 F D	103.74	
STOOT/95	-1	Ş	164 40	26.48	76.22	1.260	0.164	00.07	r 7 (, , ,	
		SD	14.39	2.80	5.99	0.716	0.009	15.54	ა გუ	T * . 0	
)	1 1	1						7 000	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# # I I I I I I I I I I I I I I I I I I				0	70	60.0	81.5	27.8	163.4	
36710051	4		118.0	5.07	o :		000	73.1	27.9	147.1	
0.001.000	7		165.8	28.5	7.,	00.	3 6		28 4	117.4	
) i	• «		164.7	23.2	51.9	0.30	01.0	7.10		R	
36710055	3 7			0 0	L 72	1.30	0.12	17.8	3/.0		
36710057	4		135.1	6.12	+ () () () ()	0 12	36.8	36.8	170.5	
0 0 0	<		120.1	35.8	55.0	0.30	71.	0 0	0 11	135 7R	
36/10039	ľ	;	0 0	77 00	54 30	0.920	0.104	78.08	07.70)))	
		Mean	140.74) ; ; ;	0.77	0.015	3.46	4.86	22.68	
		SD	23.33	4.51	⊃ # · · · ·			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111	1	
				1							

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data

FEMALES			1		1 1 1 1 1 1 1 1					
Animal Number			UREA mg/dl	CREA mg/dl	Cî mmol/l	PHOS mg/dl	CA mmol/1	Na mmol/l	K mmol/1	t
26710011		 	75.8	0.65	95.8	7.0	2.77	147.7	3.26	
36710013	1 ←		70.2	0.57	94.7	7.3	2.67	148.5	3.05	
36710015	4		200	0.56	95.1	7.5	2.63	147.9	3.18	
2011001	٦.		73.3	0.50	7.76	7.8	2.71	148.3	3.46	
26710010	÷		رب ص د	0.48	7.76	7.0	2.67	147.2	3.66	
0 T 0 O T / 0 C	4	Mark Control	67.87	0.552	95.00	7.32	2.690	147.92	3.322	
		SD	7.50	0.067	0.48	0.32	0.053	0.51	0.240	1
111111111111111111111111111111111111111		 - - - - - - - -	74 5	0.40	94.2	6.7	2.80	145.6	3.85	
10001100	רי ק		, r.	75.0	92.4	6,9	2,79	144.5	3.49	
00007/00	יי ק			. o	94 D	9.0	2.80	145.7	3.81	
00/1000	r <) . C	0.50	· œ	2.82	145.4	3.49	
36710037	יי יינ		. e.	0.32	94,0	7.0	2.46	146.2	3.97	
000100	•	Mean	61.06	0.358	93.88	6.80	2.734	145.48	3.722	
		S	9.77	0.041	0.91	0.18	0.154	0.62	0.220	
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		E			1

APPENDIX 8.2 - Clinical chemistry - At the end of recovery - Individual data

FEMALES

Animal Number	Group	PROT g/dl	ALB g/dl	GLO g/dl	AGR
36710013		6.00	φφ. 	2.03	하 다 () - 다 () - 다 ()
36710015 36710017 36710019	ə e e	6.2 5.9 6.1 Mean 6.20 SD 0.25	4.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	7.1 1.8 2.0 0.19	0.7.0 1.8.0 0.0.0 0.00
36710053	ਧਾ ਧਾ ਾ	6.8	<i>~</i> 박 (1,8	0.00 0.00
36710059 36710059 36710059	ਹਾ ਹਾ ਹਾ	Mean 0.00 0.00 0.00	ဆ ယ ဝ ၀ ၈ ၈ ရ ရ ရ ရ ရ ရ	1.2. 0.5. 0.0.	2 4 4 4 4 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

Animal Group Number 36710002 36710006 36710006 36710008 36710022 36710024 2 36710028 2 36710030 2 36710032	WOL M1 6.0 5.0 5.0 6.5 6.5 80 80 0.57 7.0 7.0	SG 1.015 1.015 1.020 1.020 1.020 0.0045 1.020 1.020 1.020
22 26 26 27 28 38 30 30 30 30	ł	1.015 1.015 1.025 1.020 1.0180 0.0045 1.020 1.020
004 004 004 004 008 008 004 004 004 004	<u> </u>	1.015 1.015 1.020 1.020 0.0045 0.0045 1.020 1.020
004 0066 0088 0088 0088 0088 0088 0088 0		1.015 1.025 1.020 1.0180 0.0045 1.020 1.020
00 00 00 00 00 00 00 00 00 00 00 00 00	ľ	1.015 1.020 1.0180 0.0045 1.020 1.020
22	ł	1.025 1.020 1.0180 0.0045 1.020 1.020
22 22 10 28 88 64 23 33 33 33 33 33 33 33 33 33 33 33 33		1.020 1.0180 0.0045 1.020 1.020
22 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ł	1.0180 0.0045 1.020 1.020 1.020
222 224 32 38 88 88 88 88 88 88 88 88 88 88 88 88	ł	0.0045 1.020 1.030 1.020
222	}	1.020 1.020 1.030 1.020
226 28 30 32 32 32		1.020
226 330 322 322		1.020
30 33 33 33 33 33 33 33 33 33 33 33 33 3		1.020
30		11 (
325		520
32		1.0230
32		0,0045
		0.10.1 1.00.1
	0.8	1.005
	æ.	1.020
	6.0	1.010
36710040 3	υ, υ,	1.015
	c	1.0120
		0.0057
36710042 4	8.0	1.015
	7.5	1.020
	7.0	1.010
	0.9	1.015
	ur,	1.015
		1.0150
	SD 0.79	0.0035

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

Number	Group	day	RED	Нď	GLU mg/dl	PRO mg/dl	BLD mg/dl	KET mg/dl	BIL mg/dl
36710002			0	7.0		200			
36710004	ᡤ	0	0	6,5	0	0 0	00.0	200	, c
36710006		0	0	7.5	50	100	00:0) () (1)	
36710008	ᆏ	0	0	6.5	0	, , o, , e,	00.0	150	0.0
36710010	T	¢	٥	7.0	0	30	00.00	40	0.0
36710022	2	0	0	6.0	0	15	0.00		0-0
36710024	63	0	0	7.0	0	15	0.00		
36710026	2	0	0	6.5	0	15	0,06	0	0.0
36710028	2	0	0	6.5	0	30	00.0	0	0.0
36710030	CI	0	0	6.5	0	15	00.00	0	0.0
36710032	m		0	7.5	0	30	000	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
36710034	m	0	0	7.5	. 0	0 M	0,00	វ ដ	0.0
36710036	m	0	0	7.0	0	30	00.00	15	0.0
36710038	m	0	0	7.5	0	100	0.00	0	0.0
36710040	ന	0	0	7.5	0	15	00.0	40	0.0
36710042	4	0	0	7.0	0	15	0.00		
36710044	Ď	0	0	6.5	0	0 0	00.00	04	
36710046	4	0	0	6.5	0	. E.	90.0	, (- , r,) C
36710048	4	0	0	7.0	0	30	00.0	상 대 다	
36710050	4	0	0	LC.	C) L	

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

	ĕ
	,
•	٠
	٠
C	3
5	ź
•	•
١,	4
7	
E	3
2	J
- 6	-
τ	70

;	URO mg/dl	1.0 1.0 4.0 1.0	1.0 1.0 1.0 1.0	00.00.	0.1.1.1.0.0.0.1.1
; } 	dnozg	ਜ਼ਿਜ਼ਜ਼ਜ਼ 	00000		ਚਾ ਚਾ ਚਾ ਚਾ
MALES	Animal Number	36710002 36710004 36710006 36710008	36710022 36710024 36710026 36710028 36710030	36710034 36710034 36710036 36710038 36710038	36710044 36710044 36710046 36710048

F-WEEK ORAL TOXICITY STUDY IN RAIS FÖLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

MALES			# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 				
Animal Number	dnox5	Ida	LEU	ERY	CRY	Eds !	ABN	
36710002 36710004 36710006 36710008 36710010	ਜ਼ਿਜ਼ਹੀ ਜ਼ਿ	ਜਿਕਾਜ਼ਜ਼	00040	0000	11001	ਜਜ਼ਾਹਜ਼ਜ਼	00000	<u> </u>
36710022 36710024 36710026 36710028 36710030	00000	0 4 4 8 4	0000	00000	00000	00000	0000	E 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
36710032 36710034 36710036 36710038 36710040	тттт	паппп	00000	00000	001111	00100	00000	1 1 1 1
36710042 36710044 36710046 36710048 36710050	य च च च च		00000	0000	0 11 11 2	0 - 1 - 0	00000	1

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

_
-
••
_
\circ
8
\sim
⋈
_
-
_

FEMALES	 		
Animal Number	Group	VOL ml	
36710001 36710003 36710005 36710007 36710009	ed ded		
36710021 36710023 36710025 36710029	0000		
36710031 36710033 36710035 36710037 36710039	<u>ოოოო</u>	4.5 2.0 5.5 5.0 1.020 5.0 1.020 7.0 Mean 4.80 5.0057	# 1
36710041 36710043 36710045 36710047 36710049	 ਚਾਚਾਚਾਚਾ 		

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

FEMALES		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 6 7 1 6 7 1	,				BTT.	l i
Animal	Group	APP	RED	PH	GLU mg/dl	PRO mg/dl	BLD mg/dl	mg/dl	mg/dl	1
Number	1		\$ 1 L L L L L L L L L	11157114911	-9				0.0	
	•	c	C	o,	0	⇒	0.0			
36710001	-4	> •			C	15	0.00	0	0	
36710003	러	o	5 (o C	5.	00.00	0	0.0	
36710005	ы	0	.) t	o c) C	00.00	0	0.0	
36710007	н,	00	o c	0.0	, 0	15	00.0	0	0.0	ļ
36710009	-1				11			1		l !
\$ 		c	c	7.0	0	12	0.00	.		
36710021	Ν.)	> 0		C	0	00.0	0	0.0	
36710023	2	0	> (· C	0.00	0	0.0	
36710025	2	0	o (. · ·	, C	, c	00.0	0	0.0	
36710029	7	0	0	۵ . ۵) 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
1	# 7 # 7 # 1 # 4	F#1111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>.</u>	<u>,</u>	00.00	0	0.0	
36710031	m	0	٥	ກຸດ	o c) tr	00.0	0	0.0	
36710033	m	0	0) · ·	5 6) u	00 0	0	0.0	
36710035	m	0	0	0.7	-) u	000	0	0.0	
10001	. (**	0	0	6.5	>		,		0.0	
000000000000000000000000000000000000000) P	C	0	6.5	0	0	00.0	>	, , , , , , , , , , , , , , , , , , , ,	l l
36/10038) 			111111111	1		1		0	
111111111111111111111111111111111111111	7	0	0	6.5	0	0 ,	000	o C	0.0	
T#001/00	r e	C	0	7.0	0	15	00.0	> "		
36/10043	ar ·) (· C	7.	0	30	00.0	ņ		
36710045	4	> (S C	, u	С	0	00.0	0	0.0	
36710047	4	o (5 () (15	00.0	0	0.0	
36710049	な	0	5) 			-5-1		E I

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

	URO mg/dl	00000	1.0 0.0 0.1 0.0	2.0 1.0 1.0 0.1	1.0 1.0 2.0 1.0
	Gronb	ਕਰ ਰ ਰ	0000	ммммм	ರಕ್ ರಕ್ಕ
FEMALES	Animal Number	36710001 36710003 36710005 36710007 36710009	36710021 36710023 36710025 36710029	36710031 36710033 36710035 36710037 36710039	36710041 36710043 36710045 36710047 36710049

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 9.1 - Urinalysis - At the end of treatment - Individual data

,

Animal Number 36710001							144	
36710001) 1 2	Idu	LEU	ERY	CRY	EGS 1	ABN	
36710001					г	0	0	
C C C C F E C C	,1		> (, c	١-	c	0	
36/10003	,—I	-	.) (4 e) C	0	
36710005	⊣	П	0	> •	⊣ (o c		
36710007	~	FT	0	o •) r	5 C	o C	
36710009	-		0			>		1 1 1 1 1 1
36710001	2	 		0	0	0	0 (
3671003	1 ~	ᆏ	0	0	 1	5 (> C	
36710025	1 (2)	Ч	0	0	,)	o c	
36710029	2	Н	0	0				1
	, , , , , , , , , , , , , , , , , , , ,	£ #1111+ #11-+			c	C	0	
36710031	m	Н	> •	> 6) -		0	
36710033	ო	,•1	○ '	5 (4 -	· c	0	
36710035	ო	H	0 '	.	-1 C	o C	0	
36710037	m	Н) [> 0	0.0	· c	0	
36710039	ო	.→	0	1 	 			1 1 1
36710041	4	0	0	0	0 1	00	00	
36710043	4	0	0	0 ()	> C	. .	
36710045	4	0	0)	⊣ €	, c) C	
36710047	4	eН	Ο,	> •	> C	o C) C	
36710049	4	O	0	>				

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

19			
	SG	1.010 1.010 1.010 1.010 1.005 1.0090	\$ 1 1 1 1
	VOL m1	g F	4.0 9.5 4.0 7.0 11.0 Mean 7.10 SD 3.17
	Animal Group Number	36710012 1 36710014 1 36710016 1 36710018 1 36710020 1 Mea	ক ক ক ক ক
MALES	Animal Number	36710014 36710014 36710016 36710020	36710054 36710054 36710056 36710058 36710060

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

Animal	Animal Group	APP	RED	НА	GLU mq/dl	PRO mg/dl	BLD mg/dl	KET mg/dl	BIL mg/dl
Number			1	,		1	****		11111111
		-	c	α	0	30	00.0	15	0.0
36710012	-1	٦.	> 0) t		0.6	0.00	0	0.0
36710014	H	. -1	>	0.7	> (2 6		C	0.0
9 500 550	,	•	0	7,5	D	001	00.0	> 1	
07007/09	-1			ر ب	C	100	00.0	0	0.0
36710018	 1	4			. (00.0	C	0.0
36710020	~	П	0	۲.۶	>	2) 	1 1 1 1 1
							1		•
		¢	-	u u	C	13	00.0	0	٥.
36710052	₫,	>	> () (· c	c	00.00	0	0.0
36710054	4	⊣	3	0.	> '	, (C
7200100	4	С	0	7.0	o	30	00.0	o •	
0007.00	μ.	, ,		u	C	080	00.0	0	0.0
36710058	4	-1	> ') (. (ı u	00 0	C	0.0
00000000	~	C	0)·	>	7	0	>	

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

NALES	URO mg/dl					1-1-5-1-1-6-5-1-1-6-1-1-6-1-1-6-3-1-6-3-6-3					
\$ 1	URO mg/dl	1.0	D. T	1.0	1.0			1.0	1.0	1.0	1.0
E	dnos	36710012	Н	H	Н	e	4	4.	4	4	\$
MALES	Animal Number	36710012	36710014	36710016	36710018	36710020	36710052 4	36710054	36710056	36710058	36710060

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

SPE 04004 CRY -----84444 ERY 00000 00000 10010 EPI 40244 Group 36710014 36710014 36710016 36710018 36710052 36710052 36710054 36710058 36710058 STUDY NO.: Animal Number MALES

ABN

00000

00000

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

	ර ග	1.030 1.025 1.010 1.020 1.0210 0.0074 1.025 1.030 1.030 1.030 1.030 0.0045
	VOL ml	2.0 4.0 6.0 2.0 3.0 SD 1.67 9.0 5.0 5.0 6.0 SD 2.24
1	Animal Group Number	36710011 1 36710013 1 36710013 1 36710015 1 36710015 1 36710051 4 36710055 4 36710055 4 36710059 4 Mea
FEMALES	Animal Number	36710011 36710013 36710015 36710017 36710017 36710051 36710053 36710053 36710053 36710053

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

FEMALES			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1
Animal Number	Animal Group Number	APP	RED	НА	GLU mg/dl	PRO mg/dl	BLD mg/dl	KET mg/dl	BIL mg/dl
36710011 36710013 36710015 36710017 36710019	ਜ਼ਿਜ਼ਗਜ਼ਜ਼	00000	00000	8	00000	30 15 30 30	000000	00000	0.0000
36710051 36710053 36710055 36710057 36710057	 		00000	0 - 0 0 0 0 0 0 0 0	00000	00100	00000	00000	0.0000

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

	URO mg/dl		1.0			
	URO mg/dl	2.0	2.0	1.0	1.0	1.0
) 	dnozg	36710011 1 36710013 1			ধ ধ	ਹਾਂ ਹਾਂ
FEMALES	Animal Number	36710011 36710013	36710015 36710017 36710019	36710051	36710053 36710055	36710057 36710059

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 9.2 - Urinalysis - At the end of recovery - Individual data

Group EPI LEU ERY CRY SPE 1 1 0	FEMALES						
11	Animal Number	Group	LEU	ERY	CRY	SPE	ABN
	36710011 36710013 36710015 36710017 36710017 36710051 36710053 36710055 36710055 36710055	1 H C C C C C C C C C C C C C C C C C C	 00444	00000	ㅇㅋㅋㅋㅋ	50000 00000	0000 0000

APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data

				2		Econt		Liver
Animal Number	Group	Termina. B.W. (g)	Adrenals	臼	pididymides		Kidneys	
	 	7 300		1.78	1.056	1.24	2.08	8.83
36/10002	1 r	0,000	n 70 0	77 1	1.044	1.20	2.22	10.10
36710004	⊣ •	301.2	0 v		1.127	1.27	2.23	9.16
36710006	1	348.0	£00.0	~ · · ·	- n	1 34	2.03	8.89
36710008	Н	340.7	0.042	# (F)	771.	' (C)	71.0	8.67
01001735	-	348.3	0.041	1.88	¥¥0.⊥	77.1	, T. 7 , T. 7 , T. 7	() c
) ;	ı Μ πεσ	346.94	0.0486	1.806	1.0898	1.234	2.145	107.0 107.0
		(C)	6600.0	0.050	0.0381	0.080	0.087	0.638
	g (E	(5)	(5)	(5)	(2)	(2)	(2)	(5)
		,		0	400	1.12	2.28	10.66
36710022	7	339.9	0.049	r (°) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	1.5	40.0	9.73
36710024	7	317.6	0.046	1./3	000.1	H 17		o o
36710026	0	320.4	0.054	1.78	1.107	1.1		7 0
000000000000000000000000000000000000000	ıc	340 8	0.050	1.82	1.098	1.29	2.13	70.01 10.01
07007100	1 0	0.00	050.0	1.87	1.240	1.16	2.15	11.48
36/10030	7)	, c	8000	1 805	1.1072	1,168	2.140	10.462
	Mean	00,00	0 0 0 C	0.054	0.0851	0.070	0.091	0.799
	T o	14.50	0	- u	(d)	(5)	(3)	(2)
	(n)	(2)	(2)	(c)	(2)			
		•	•	6	1 002	1.17	2.23	14.57
36710032	m	343.00	0.038	# C	1000		2,50	14.31
36710034	m	346.7	0.049	0.1	# (f) (c) (c) u	, C	14 94
36710036	ო	354.8	0.071	1.84	1.23/	n	, ,	12.03
85001735	~	329.1	0.044	1.80	1.056	1.1.	¥7.7	77.00
00001796	ייי	10 E	0.048	1.84	1.099	1.24	2.24	14.10
0000000	2	0.1.00	0.0500	1.824	1.0976	1.233	2,358	14.270
	Pean) H C C C C C C C C C C C C C C C C C C C	0.000	0.023	0.0871	0.068	0.173	0.837
	(E)	(5)	(5)	(5)	(2)	(2)	(3)	(2)
							,	1.
26710017	_	746 7	0.041	1.79	1.156	0.89	2.01	L5.13
74001100	r <	2010	0.046	1.83	1.053	0.93	2.08	18.27
55001105		7 t 7 t 1 c		69	766.0	0.87	2.14	17.27
36710046	ਰਾਵ	7.000	10.0	7. 1.	1.042	1.08	2.41	18.15
36710048		307.		' (°	1.003	68.0	1.80	16.15
36710050	4	260.6	0.03%	7.07	7 0000	0:00	780 6	16,995
	Mean	277.10	0.0428	1./61	1.0002	, , ,	0000	1 344
	SD	24.25	0.0035	0.085	0.0598	9,000	0.220) (d)
	E	(4)	(i)	(M)	(2)	(n)	(n)	(c)

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data

Thyroid	860	0.028	0.022	0.027	0.025	0.023		0.000	0.0025	(5)	7000	0.027	0.029	0.026	0.026	0.021		0.0238	0.0029	(5)		0.027	0.027	0.027	900 000	2100	0.027	0.0268	0.0004	(5)		0.024	3000	2000	240.0	0.029	0.024	0.0252	n. nn24	
Thymus		0.400 0.400	0.553	0.490	0.625	7 465	001	0.5252	0.0645	(2)		0.654	0.542	0.431	0.663	747	# (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	0.5508	0.1063	(2)		0.552	0.494	1 m		0.482	0.566	0.5460	0.0619	(5)		186	0 0 0	0000	0.38	0.418	0.237	9608-0	7000	
Testes		4.084	3.572	3.815	3 626	000	3.0%	3.7378	0.2163	(2)		3.676	3.608	3.784	400 6		ω, α	3.7782	0.1372	(E))	3.470	3 827		0.00	3,967	3.632	3.7664	0.2113	1 (1)	(2)	787 6	r (9/9-8	3.618	3.713	3.314	0103	0.0440	
Spleen	111157115711571157	0.901	0.865	1.004	. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.00	0.849	0.8874	0.0717	(5)		0.900	669.0	000	0000	001	0.933	0.8012	0.1129	(4)		α []	000	0.00	0.960	0.748	0.730	08080	00000) .	(8)	(0.436	0.707	0.500	0 613) (1) (2) (2	יים מיים מיים מיים מיים מיים	0.5482	
Terminal B.W. (g)		938	361.2	1000	0 10	340./	348.3	346.94	· C	(5)		9	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		370.4	340.6	350.9	333	0000) (i	(2)		344.0	346.7	354.8	329.1	2. Les) () () (o I · → ⊅°	10.75	(2)		246.7	291.8	7.8.7	1000		260.6	277.10	
Group	1	,	4 6	ન τ	-	, - 1	_	1 % L	11001	G (#		c	4 (7	7	2	^	1	E de la	<u>,</u>	(E)	ı	m	m	m	. ~) (n :	Mean	SD	(n)		4	勺	. <	, ,	7	7	Mean	
Animal		00000000	2001700	36710004	36710006	36710008	01001725	2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					36710022	36770074	36710026	36710028	05001736	0007.00					36710032	36710034	36710036	000000000000000000000000000000000000000	0000100	36/10040					36710042	36710044	001100	36710040	36710048	36710050		

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			· · ·		Kidnevs		Ovaries
Animal Number	Group	Terminal B.W. (g)	Adrenals	UT BYC	Heart		Liver	
1	1			1.72	0.88	1,58	6.02	0.150
36710001	۰,	4367	2000]	0.90	1.46	6.38	0.125
36710003	⊣	1.177	0.00	H CO V	0 0	1.30	5.96	0.129
36710005	, 1	227.0	0.00/	00.7		, ,	o u	721
26710007		213.1	0.064	1.74	ວ. ນ	2 · · · · ·) i) (
0000	ł - -	207 6	0.064	1.67	0.78	1.31	U . V.	, o d o
TOOOT / OC	4 2	0 00 00 00 00 00 00 00 00 00 00 00 00 0	0 0648	1.669	0.858	1.414	5.865	0.12/4
	1 t	27 71	0 0013	0.064	0.076	0.112	0.407	0.0153
	(n)	(5)	(9)	(2)	(5)	(2)	(2)	(5)
					37.0	7.8.7	5.49	0.116
36710021	7	212.2	0.054	o ()		0 5	6 40	0.134
36710023		228.7	0.061	1.63	0,.0) () (
10001100		215.6	0.059	1.67	0.76	1.22	5.12	0.00
2007/05	1 (0 10	C90 U	1.60	0.83	1.44	6.16	0.116
30/1002	v ;	100000	100 kg C	1.642	0.832	1.377	5.942	0.1140
	Mean	50.122	0 0	1000	101	0.116	0.410	0.0181
	SD	8,38	0.0036	. 50.0		0 (5)	(4)	(4)
	(1)	(4)	(4)	(4)	(4)	r)	F)	
	(,	o o o	رب رب	67.0	1.52	6.84	0.112
36710031	m	231./	0.00) = -	ι α 	1.41	6.80	0.139
36710033	m	207.3	8/0.0	4 (- (- () (d	1 45	6,69	0.111
36710035	ന	213.8	6/0.0	n/.T	000	, r	. u	0 131
36710037	m	203.2	0.064	1.67	78.0	D. 1) (1000
2671772	۰ ۳	208.1	0.056	1,65	0.83	1.40	o⊤•9	007.0
900	2	210.82	0.0672	1.679	0.835	1.432	6.518	9811.0
	riegi.	10:11:	0.011	0.042	0.032	0.058	0.359	0.0159
	g (n	(5)	(5)	(2)	(2)	(2)	(5)	(3)
					C C	1 34	74.8	0.103
36710041	4	187.1	U.041	n . T	o (, t , n	, o	87.10
36710043	47	191.3	0.057	1.62	0.72	1.57	F (0.00	0.00
2001-00		191.1	0.062	1.57	0.73	1.40	30.6	0.100
000100		7 900	0.059	1.71	0.80	1.44	8.95	0.110
567 TOO47	r		מיני כי	1.65	0.91	1.34	8.22	0.121
36/10049	ar)	0,000	0 0 0	1 620	0.759	1.416	8.540	0,1168
	Mean	# COD	00000	0.000	0.102	0.097	0.438	0.0110
	SD	n	7800.0	1	(\(\frac{1}{2} \)	(9)	(2)	(2)
	(r	(2)		6				111111111111111111111111111111111111111

#4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 10.1 - Absolute organ weights (g) - Final sacrifice - Individual data

	Thyroid	0.014 0.015 0.015 0.017 0.0176 0.0146	0.015 0.014 0.017 0.018 0.0160 0.0018	0.015 0.012 0.016 0.017 0.014 0.0019 (5)	0.016 0.013 0.013 0.014 0.0148 0.0013
 	Thymus	0.436 0.359 0.417 0.356 0.309 0.3754 0.0511	0.422 0.377 0.305 0.305 0.0663 (4)	0.393 0.336 0.390 0.512 0.407 0.0643 (5)	0.323 0.316 0.350 0.250 0.326 0.3210 0.0215
	Spleen	0.780 0.584 0.587 0.683 0.683 0.6978 0.0848	0.534 0.705 0.468 0.716 0.6058 0.1240	0.559 0.489 0.497 0.601 0.533 0.5358 0.0461 (5)	0.380 0.456 0.426 0.463 0.512 0.4474 0.0487
	Terminal B.W. (g)	232.4 227.7 227.0 213.1 207.6 221.56 10.62	212.2 228.7 215.6 227.7 221.05 8.38 (4)	231.7 207.3 213.8 203.2 208.1 212.82 11.21 (5)	187.1 191.3 191.1 206.7 204.5 196.14 8.83 (5)
	Group	Mean SD (n)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Mean SD	4 4 4 4 4 4 4 8 8 D SD (n)
FEMALES	Animal Number	36710001 36710003 36710005 36710007 36710009	36710021 36710023 36710025 36710029	36710031 36710033 36710035 36710037	36710043 36710043 36710045 36710047 36710049

APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data

MALES				1				1
Animal Number	dnozg	Terminal B.W. (g)	Adrenals	Brain	Epididymides	Heart	Kidneys	Liver
	1		311111111111111111111111111111111111111		5		o c	o u
25710012	•	378.3	0.065	1.75	1.395	1.24	07:7	9 6
21001/00	1 :) i	770	1 76	1.130	1.17	2.00	a. 38
36710014	-	349.0	F 10 0	0	1.0	1 29	2,39	10.57
36710016	,I	382.3	0.052	1.84	/ TZ:T		1 5	c c
0 100 100	۱.	370 8	0.044	1.80	1.124	1.20	1.91	0 (
20/10010	⊣ -) (P	0.00	27 1	1,129	1.18	2.13	w.⊃.v
36710020	.⊣	3/2.4	250.0	1 (100	710 1	2 152	9, 188
	Mean	364.66	0.0494	1.773	J. 1990	1.2.1	1111	
			3000 C	0.045	0.1162	0.048	0.178	U.931
	OS C	18.41	0.0)	1111	(1)	(A)	(2)
	(E	(5)	(3)	(c)	(c))	
						•	(07 61
	•	7 .00	0 043	1.76	1.069	0.94	2.15	L / . 40
36/10052	4	0.107) (C 867	0.70	1.65	14.73
36710054	4	231.2	0.032	7		0	V C V	16.94
33001756	4	252 6	0.051	1.69	7.020	70.0	1 1	1 1
0001.00	,	000	0110	1 70	1.058	1.02	2.13	40.81
36710058	47"	738.9	0.0) (- u	100	1 02	7.47	19.47
36710060	7	303.7	0.043	7.58 ⊥.58	1.020	70.7	. (V000
2		73 676	0.0456	1.661	0.9824	0.897	2.089	D.C. / T
	Hea!	00.07	1010	777	7771 0	0.139	0.295	1.733
	S	31.02	TOTO:0		· · · · ·	T.	(5)	(2)
	(u)	(2)	(2)	<u>(ဂ</u>)	(3)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data

					7 7 1 1 1 1 1 1 1 1	
Group	Terminal B.W. (g)	Spleen	Testes	Thymus	Inyrold	
1	378.3	0.990	3.743	0.476	0.021	
-1) tr	0.753	3,508	0.433	0.017	
-1 F) (C	D66 C	3.621	0.470	0.025	
٠,	0.00) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	6000	0.853	0.019	
4	540.8	7 10 00		(4AA.)	0.017	
, - 1	372.4	0.801	3.042) ! ! !	0 0 0	
Υ α α	364.66	0.8638	3.7084	0.4750	BETO.0	
G	18 41	0.1165	0.1403	0.0472	0.0033	
g (E	(5)	(5)	(5)	(2)	(9)	
7	281.6	0.575	3.368	0.346	0.021	
٠ ٧	231.2	0.529	2.939	0.086	0.017	
r <	ייייייייייייייייייייייייייייייייייייי	0.543	3.649	0.315	0.030	
+ •	0 000	0.670	3.479	0.492	0.016	
r •	0 C C C C C C C C C C C C C C C C C C C	2.6	3 692	0.334	0.026	
T ;	,	0 C C C C C C C C C C C C C C C C C C C	3 4254	0.3146	0.0220	
Mean	273.60	0000.0	3016	0.1459	0.0060	
SD	31.02) . H tt	1 () 1 () () () () () () () ()	14/	
(n	(8)	(3)	(a)	(6)	(6)	3 1

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data

		*						Adiration C
Animal Number	Group	Terminal B.W. (g)	Adrenals	Brain	Heart	Kidneys	Liver	
1	1			***************************************		1 ነ	5.61	0.118
110017		233.5	0.059	1.69	o, . ∪) L	1 (7)	0 122
11001/0	+ •	0 1 0	050 0	1.69	0.76	1.35	יים מיים מיים	1 0
6710013	- 1	1.612		77	ω α Ο	1.38	5.15	0.100
6710015		219.2	0.009	21.1	0.0	- C V	5,43	0.115
7100173		222.4	0.052	1.68	0.02	, c		0.120
0 100 110	1 *	222 /	0.046	1.53	0.81	1.31	7 (7	0 7 1 1 0
6.1001/9	-1	1.777		777	œ C œ C	1,359	5.413	7011.0
	Mean	222.52	0.0552	000	1000	AEO 0	0.167	0.0063
	Ç	۳ ۳	0.0000	0.0/4	0.03		(U)	(4)
	110) · ú	(5)	(5)	(S)	(2)	(6))
	(a)	(0)						
				()	6	000	8.51	0.097
1200172	<	201.4	0.052	1./3) ·	น	0 084
TOOTIO	;•	1 1	770	1 60	0.68	T. 444	10.0	* 1
36710053	4	191.3	*****) (1) (1	, r	ακ -	8.40	0.121
26710055	4	197.6	0.055	۲.۵٬	· · ·		α ΓC α	0.101
0 1		7	A.P.O. C.	യ്	0.74	Or - +	į	
36710057	4	213.2	3 1	1 7	77 0	1.50	8,30	0.120
92001624	4	209.8	0.051	5 0.⊤		000	B 420	0.1046
1	;	99 606	0.0518	1.642	0./34	F. 048		
	Mean	202.00	0000	940	0.032	0.082	0. L44	0.0130
	SD	8.92	/ #OO · O		(4)	(5)	(2)	(2)
	(1	(F)	(2)	(0)	(2)			

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 10.2 - Absolute organ weights (g) - Recovery sacrifice - Individual data

6 1 1 6 1 1 6 7 1 6			
E 1 5 1 E 1 F 1 F 5 1	Thyroid	0.025 0.011 0.019 0.015 0.021 0.0182 0.0054 (5)	0.016 0.026 0.015 0.024 0.0196 0.0050 (5)
5 # # 7 _ 6 7 _ 6 7 _ 6 7 _ 6 7 _	Thymus	0.616 0.330 0.322 0.327 0.354 0.3898 0.1270 (5)	0.308 0.286 0.363 0.398 0.3382 0.0443
 	Spleen	0.689 0.634 0.571 0.634 0.511 0.6078 0.0684 (5)	0.510 0.549 0.506 0.559 0.5278 0.0244 (5)
		233.5 219.2 222.4 222.4 222.52 6.83 (5)	
	Group	Nean SD (n)	Mean SD (n)
FEMALES	Animal Number	36710011 36710013 36710015 36710017 36710019	36/10051 36710053 36710055 36710057 36710059

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 11.1 - Relative organ weights° - Final sacrifice - Individual data

٥	
•	
8	
젔	
P	
ß	

MALES				1	157-141-153-153-16			t
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			rie T		Heart		Liver
Animal Number	Group	Terminal B.W. (g)	Adrenals		Epididymides	1	Kidneys	
	1				0.315	0.37	0.62	2.63
36710002	-	335.6	0.016	0.00	0000	66.0 6	0.61	2.80
7671004	r	361.2	0.012	S#10	0 0	- C	0.64	2.80
1000 TOO	- I	9.48.6	0.018	0.51	0.323		09.0	2.61
36/10006	- 1 .) (0.012	0.54	0.330	0.39		0 4
36710008	Н	340./		75.0	0.316	0.32	0.62	n 1 / /
36710010	Н	348.3	210.0	, , ,	0 3144	0.356	0.618	7.003
	Mean	346.94	0.0140	120.0	24.00	0.028	0.016	0.132
	G	9.70	0.0029	0.022	#0 TO . O) (II)	(5)	(2)
	a É	(if)	(2)	(2)	(2)	(6))	
	(11)					1		در در
			6	۸ 4	0.295	0.33	/9.0	7 6
36710022	Cł	339.0	*****	, c	343	0,35	0.64	90.5
35710024	2	317.6	0.014	# (C) (c	75.0	0.65	2.99
1000	ır	4 0 0 2 5	0.017	0.55	0.0	000	0 62	3,19
36/10020	4 1		210 O	0.53	0.322	0.38	000	. 0
36710028	7	340.6) * # F	C 73	0.353	0.33	10.0	- (O
36710030	7	350.9	#TO:0) (8155 0	0,350	0.641	3.130
	Mean	333,88	0.0149	T.C.O		0 000	0.023	0.109
	0	14.30	0.0011	0.009	0.0233	370.0	(R)	(2)
) (, H	(5)	(2)	(c))	
	(11)						Ü	4 24
		0	110 0	0.54	0.291	0.34	69.0	r (* c
36710032	m	343.8	1 5	C (C)	0.316	0.38	0.72	4
36710034	m	346.7	# () () () () () () () () () () ii	978 0	0,35	0.73	4.21
36710036	m	354,8	0.020	20.0	7.00	ស្តាត - C	0.68	3-90
96710088	۲,	329.1	0.013	0.55	1000	1000	0.67	4.43
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, r	221 5	0.014	0.55	0.332		1000	4.182
20/10040	; ני) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.0146	0.535	0.3216	0.362		194
	Mean	OH: 4:0	2000	0.015	0.0211	0.018	FCO.0	1 11
	SD	07.01	(4)	(2)	(5)	(2)	[6]	(2)
	(E	(2)	(6)	3				1
				6	944	0.36	0.81	6.13
36710042	4	246.7	0.017	υ'. υ'.	ייני מייני מייני	0 32	0.71	6.26
0000000	4	291.8	0.016	C. 63	4 6 6	1 -	77	6.20
*********	r=	710	0.015	0.58	0.358	4 ii	- 0 1 2 0	5.90
36710046	:	. 1000	7.00	0.57	0.339	0.35	0/.0	, ,
36710048	4	30/./) (07.0	0.419	0.32	0.69	0000
36710050	47"	260.6	0.00	0/40	0,3840	0.331	0.753	6.138
	Mean	7.1	0.0155	0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.022	0.051	0.141
	QS	24.25	8000.0	1,0.0) () ()	(r)	(5)	(3)
	(n)	(2)	(5)	(ဂ ဂ				
1 1 1		31111111111111		1				

 $^{\circ}$ = expressed as % organ to body weight ratio

APPENDIX 11.1 - Relative organ weights° - Final sacrifice - Individual data

Thyroid		0.008	000.0	0000		/00.0	0.0072	6000.0	(n)	0.008	0.009	0.008	0.008	0.006	0.0078	0.0011	(5)		0.008	0.008	0.008	0.008	800 0	00000	0000	2000.0		010	0000		0.000	0.09	0.00%	0.0091	0.0006	(5)	
 	Thymus	0.147	0.153	0.140	0.183	0.134	0.1515	0.0193	(2)	0.192	0.171	0.135	0.195	0.132	1549	80 EC	(4))	0.161	0.142	0.179		0 (1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0. Logs	9570.0	(c)	4.0	0.0.0	0.100	0.143	0.136	0.091	0.1102	0.0289	(2)	\$11E11E1
Testes]	1.217	0.989	1.093	1.064	1.031	1.0790	0.0864	(8)	1.081	1 136	1.181] [] [] [4 6 6 6 7 7 7	1.1324	0.0382	(0)	1 000	# F C C C	100	1. FOU	2.203	1.096	1.1047	0.0695	(2)		1.534	1.260	1.298	1.207	1.272	1 3140	1010) (r	
	Spleen	0.268	0.239	0.288	0.240	0.244	0.83.C	0.0214	(5)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000	022.0	7.77	152.0	0.266	0.2392	0.0246	(2)	•	0.200 0.000	0.256	0.271	0.227	0.220	0.2367	0.0258	(2)		0.177	0.242	0.179	001.0	1 4 5	0000	0.1400	2020.0	(C)
Tomiman	B.W. (g)	335.6	361.2	0.00	, ,		0.00	440.04	(5)	6	339.9	317.6	320.4	340.6	350.9	333,88	14.30	(2)		343.8	346.7	354.8	329.1	331.5	341 18	10.75	(5)		246.7	00100	110	7 100	30/-	260.6	277.10	24.25	(8)
	dnoss		٠,-	4 ←	٠.	٦,	H	Mean	G (E		2	2	7	2	2	Mean	SD	(n)		m	m	ო	m) (r) Y	SD.) (E			r' <	3' '	4	47	4	Mean	SD	(u)
MALES	Animal Number	0000	36/10007	36/1004	36/10006	36710008	36710010				36710022	36710024	36710026	36710028	36710030					36710032	36710034	36710036	96710038	0001000	OFFOOT / DO				0.00	2500T/05	36710044	36710046	36710048	36710050			;

expressed as % organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 11.1 - Relative organ weights° - Final sacrifice - Individual data

FEMALES	į						[]	Ovaries
 	Group	Terminal G G G	Adrenals sign	Brain	Heart	Klaneys	Liver	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Number	ļ	(5) .M.G	1911 - 191				01.0	0.065
k 	 	0	0.028	0.74	0.38	99.0	0 0	14.C
36710001	⊣	636.4	0000	17.0	0,39	0.64	7.80	000
36710003	, -1	227.7	0.020		3.5	0.57	2.62	750.0
36710005	Н	227.0	0.030		3 4 5	0.67	2.67	0.059
10000	۱ -	213.1	0.030	0.82	n tr		2.55	0.052
36/1000/	4 .		0 031	0.80	0.37	0.0) (7000
36710009	- -1	9./07		77.77	0.388	0.638	2.646	T
	Mean	221.56	0.0280	0 0	0.037	0.040	0.097	0.0049
	C.S.	10.62	0.0012	0.053) (i)	(A)	(5)	(2)
	Ē	(5)	(8)	(2)	(c)	2	:	
	(;;)					L V	c an	0.055
		(320 0	0,79	0.36	0.63	3 (
36710021	α	2.2.2	0.00	12	0.43	0.65	2.80	0.00
36710023	7	228.7	0.027	1 t	, C	0.56	2.65	0.042
3671005	^	215.6	0.027	77.0			2.70	0.051
0001100	1 (7 700	0.027	0.70	0.3/	0.0	0	0 0515
36710029	7	1.77	7300 O	0.744	0.376	0.622	7.000	0000
	Mean	221.05	00000		0.037	0.040	0.088	0.007
	SD	8.38	6,000	##O.O		(4)	(4)	(4)
	Ę.	(4)	(4)	(4)	r			
						0	2000	0.048
		L	0.025	0.70	0.34	0.00	, ,	790 0
36710031	m	231.7) a	83.0	0.40	0.68	87.E	
36710033	m	207.3	0.00	ι τα 	0.40	0.68	3.13	0.032
36710035	m	213.8	0.03/	+ (0		0.68	3.03	0.064
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. (*	203 2	0.031	0.83	04.0		r o	0.048
2007/05	ጎ፡	1	720 0	67.0	0.40	0.0)	0330
36710039	m	208.1	7 60 60	197 0	0.394	0.673	3.065	, ,
	Mean	212.82	0.03±0		500	600.0	0.143	0.0091
	CS	11.21	8500.0	1,000) (u >)	(5)	(2)	(3)
	(2	(2)	(5)	(2)	(2)	ì		
	()				,	i	ል የ	0.055
	,	f 100 00 00 00 00 00 00 00 00 00 00 00 00	0.022	0.83	0.34	7/10	9 6	0.00
36710041	4,	T - / G T		28	0.38	0.82	4.20	1000
36710043	4	191.3	0.030	, c	œ c	0.73	4.72	0.069
37001626	7	191.1	0.032	0.02		02.0	4.33	0.053
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	, ,	T U	0.029	0.83	0.38			950°0
36710047	7,		760 0	0.81	0.44	0.65	70.0	2000
36710049	4	ZU4.5	0000	308 C	0.386	0.723	4.360	0.00
	Mean	196.14	0.0280	0.00	8800	0.062	0.275	0.0062
	C S	8.83	0.0039	212.0) (1	(5)	(2)	(2)
	5	(%)	(5)	(2)	(c)	`) ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111111111111
	(11)		111111111111	41-L9-L6961-L				

expressed as % organ to body weight ratio

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 11.1 - Relative organ weights" - Final sacrifice - Individual data

6 7 6 7 6 6 7 7 8 9 1 1 1 1 1 1 1 1 1						
,	Thyroid	0.006 0.007 0.007	0.005 0.008 0.0066 0.0013 (5)	0.007 0.006 0.008 0.008 0.0072 (4)	0.006 0.006 0.007 0.008 0.007 0.0010 (5)	0.009 0.008 0.007 0.007 0.0076 0.0076 (5.5)
	Thymus	0.188 0.158 0.184	0.167 0.149 0.1690 0.0166	0.199 0.165 0.213 0.134 0.1776 0.0354	0.170 0.162 0.182 0.252 0.196 0.1923 0.0357 (5)	0.173 0.165 0.183 0.140 0.159 0.160 (5)
	Spleen	0.336	0.368 0.329 0.3158 0.0431	0.252 0.308 0.217 0.314 0.2729 0.0467 (4)	0.241 0.236 0.232 0.296 0.256 0.253 0.0259	0.203 0.238 0.223 0.224 0.250 0.2578 0.0178
	Terminal B.W. (g)	232.4	213.1 213.1 207.6 221.56 10.62 (5)	212.2 228.7 215.6 227.7 221.05 8.38 (4)	231.7 207.3 213.8 203.2 208.1 212.82 11.21 (5)	187.1 191.3 191.1 206.7 204.5 196.14 8.83
•	Group	 - - 	1 1 Mean SD (n)	2 2 2 2 2 2 2 2 3 5 5 (n)	3 3 3 3 3 Mean SD (n)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
FEMALES	Animal Number	36710001	36710005 36710007 36710009	36710021 36710023 36710025 36710029	36710031 36710033 36710033 36710037 36710039	36710041 36710043 36710045 36710047 36710047

expressed as % organ to body weight ratio

APPENDIX 11.2 - Relative organ weights° - Recovery sacrifice - Individual data

Animal Number	1 1 1 1 1 1 1 1 1					44 **		100
	Group		Adrenals	Brain Epi	Spididymides	1000KC	Kidneys	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111111111111111111				c	0 83
1		: !	t	77	0,369	0.33	00.0) (
2100172	,	378.3	\ TO.O	2	0 0	66	ربر 1	2,40
21001/0	-1) 1	515.0	0.50	0.323	0.00		1 (
4710014	-	349.5	0 + 0 . 0		0.0	2 C	0.62	2.70
1	: •	0 000	0 014	0.48	010.0	,		~ ~
6710016	→	356.3		0	0,440	ന്	80.0	7
0	•	340 B	0.013	0.00			C 11 C	2 44
RIOOT/9	4			\d \d \c	0.303	0.32	6.3	1
0000105		372.4	0.014			ACC 0	Cor C	2.51
0700710	,		7010	787	0.328/	# nn n		
	Mean	364.66	0.010.0	.	4 000	5 LO O	0.023	0.14
			2000	0.027	0.0240	1	· · · · · · · · · · · · · · · · · · ·	<u>u</u> ,
	SD	T\$ - 2T	100.0		(4)	(2)	(n)	0
	(4)	(5)	(2)	(c)				
	(**)							Ċ
					c	33	0.77	7 9
		7	0 01B	0.63	0.380			
36710052	7	201.0	* !	(330	0.30	0.72	2.0
	•	221.2	0.014	0.00	004.0		0	7
36/T0024	; •	1	000	L3 C	0.432	0.32	00.0	;
200112	d	252.6	0.020	5	; •	800	1.2	0.9
00001/00	ŗ		020 0	0.57	0.354	#n.0	1	
36710058	4	208.0	0.000	- (1) (0000	ر د د	0.81	6.4
		1 000	0.014	0.52	0.00			70
36710060	4,	7.505	1 1 1	0	7838	0.326	79/.0	10.0
		273 60	0.0166	0.013	10000		1,00	n 24
	Mean	20.0	600	890 0	0.0527	0.015	\ #O.O	1
	SD	31.02	1500.0	9 1		(11)	(2)	3)
	(\$	(5)	(3)	(v)	(0)	2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

expressed as % organ to body weight ratio

APPENDIX 11.2 - Relative organ weights° - Recovery sacrifice - Individual data

	Thyroid	0.005 0.005 0.007 0.006 0.005 0.0054 (5)	0.007 0.007 0.012 0.005 0.009 0.0081 0.0024 (5)
	Thymus	0.126 0.124 0.123 0.162 0.119 0.1308 0.0178 (5)	0.123 0.037 0.125 0.165 0.110 0.0465 (5)
	Testes	0.989 1.029 0.947 1.156 0.978 1.0199 0.0815 (5)	1.196 1.271 1.445 1.164 1.216 1.2583 0.1112 (5)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Spleen	0.262 0.215 0.259 0.230 0.215 0.215 0.2363 0.0228	0.204 0.229 0.215 0.224 0.202 0.2148 0.0119
	Terminal B.W. (q)	378.3 349.5 382.3 340.8 372.4 364.66 18.41	281.6 231.2 252.6 298.9 303.7 273.60 31.02
	Group	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A A A A A A M Mean
MALES	Animal	36710012 36710014 36710016 36710018 36710020	36710052 36710054 36710056 36710058 36710060

APPENDIX 11.2 - Relative organ weights" - Recovery sacrifice - Individual data

1		ļ		(Kidneys		Ovaries
Animal Number	Group	Terminal B.W. (g)	Adrenals	11 to 11 o	Heart	E S P P P P P P P P P	Liver	
1		;			/	0.58	2.40	0.051
	-	233.5	0.025	0.12	3° '		נטני	0.057
***	4 -) (C	0.003	0.78	0.35	0.63	3	
710013	, - 1	7.512	20.0		000	0 63	2.35	0.048
1000000	-	219.2	0.031	B/.5	0.0		77 0	0.052
OTODTIC	-1	1 1	600	77	0.37	50.0	rr. 7	
710017	,	222.4	0.023) (c	4	or ur	2.45	0.054
0.00	•	222 4	0,021	0.00	0.39) :	0 400	6080
7.10013	4	1117	0,00	200	0.363	0.611	2.433	0
	Mean	222.52	0.0248	7		KCC C	0.065	0.0032
			0 0041	0.041	0.020	4.0.0		
	SD	0.00	10000	()	(5)	(5)	(S)	(0)
	(m)	(3)	(2)	(0)				
								0.00
				0 0	0.38	0.64	4.23	0,0
1210051	7	201.4	0.026	0.0	, to	יני כ	4 50	0.044
1			FC0 0	C C	05.0	7	1 !	
5710053	4.	191.3	0.0		96.0	0.70	4.25	190.0
710055	4	197.6	0.028	70.0			cc cc	0.047
2224			3000	0.74	0.35	00.0		
5710057	4,	213.2	0.00		נית	0.72	9.00°	0.05
0	•	200.8	0.024	w ` . ⊃	7		671 7	0.0516
81T0038	r		MACO O	0.812	0,363	169.0	50 T . F	
	Mean	202.66	3°0000		א רכי	0.046	0.250	.,00.0
	C	80.80	0.0019	0.049	7) (II) (II) (II) (II) (II) (II) (II) (I	(5)	(5)
	1	14	(8)	(ဂ)	(a)	(6)	0	

expressed as % organ to body weight ratio

APPENDIX 11.2 - Relative organ weights" - Recovery sacrifice - Individual data

	Thyroid	0.001 0.005 0.009 0.009 0.0081 0.0022 (5) (5) (5) 0.008 0.008 0.001 0.001 0.001 0.0025 (5)
, L	Thymus	0.264 0.153 0.147 0.159 0.159 0.0504 (5) (5) 0.167 0.167 0.165 0.165 0.063
	Spleen	0.295 0.295 0.285 0.285 0.2730 0.0280 0.0280 0.256 0.256 0.267 0.266 0.266 0.266 0.2153 0.2153
	Terminal B.W. (g)	233.5 215.1 219.2 222.4 222.4 222.52.4 6.83 (5) (5) (5) 197.6 197.6 203.8 203.6 8.92 (5)
į	dnox9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		36710011 36710013 36710015 36710017 36710019 36710053 36710053 36710055 36710055

• = expressed as % organ to body weight ratio

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	1 Dose level: 0.0 mg/kg/day	ij	Wirrecopic observations / Comments		INPLANMATORY CELL FOCI, Multifocal, Slight,	Perivascular, Intralobular.
E	Group:	phase	í	Tissue Gross observations / Comments		Liver

BILE DUCT PROLIFERATION, Multifocal, Slight.

Whole animal . . . No abnormalities detected

Brain Duodenum Jejunum Parathyroid gl. Sciatic nerve Stomach Trachea	
Bone marrow Colon Ileum Mesenteric nodes Rectum Spleen Thyroid	
Bronchi Cervical nodes Heart Lungs Prostate Spinal cord Thymus	
Adrenals Caecum Epididymides Kidneys Pituitary Seminal vesicles Testes	Urinary bladder
The following tissues are normal Adrenals Bronchi Bone marrow Brain Caecum Caecum Cervical nodes Colon Duodenum Epididymides Heart Iteum Jejunum Kidneys Lungs Mesenteric nodes Parathyroid gl. Pituitary Prostate Spleen Stomach Seminal vesicles Spinal cord Thyroid Trachea	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	Dose level: 0.0 mg/kg/day	Microscopic observations / Comments	NEPHROPATHY, Focal, Slight, Unilateral.	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	BILE DUCT PROLIFERATION, Multifocal, Slight.	INFLANMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.	PERIBRONCHIAL LYMPHOID HYPERPLASIA, Slight.	MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, Mild.
\$ \$ 7 1 4 4 7 1 4 5 7 1 1 5 7 1 1 5 7 1 1 6 5 7 1 1 6 5 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1	10004 Dosing phase Sex: Male Status: Final phas	ervations /		Liver		rungs		Prostate

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Brain Duodenum Jejunum Rectum Spleen Thyroid
	Bone marrow Colon Ileum Pituitary Spinal cord Thymus
	Bronchi Cervical nodes Heart Parathyroid gl. Seminal vesicles Testes Urinary bladder
	Adrenals Caecum Epididymides Mesenteric nodes Sciatic nerve Stomach Trachea
Whole animal No abnormalities detected	The following tissues are normal Adrenals Bronchi Bone marrow Brain nicroscopically: Epididymides Heart Ileum Jejunum Mesenteric nodes Parathyroid gl. Pituitary Rectum Sciatic nerve Seminal vesicles Spinal Cord Spleen Stomach Trachea Utinary bladder Thymus

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	ж
••	и
	м
100	ш
•	
•	,
•	•
	_
	•
Š	3
≥	2
~	4
-	
- >	1
-	
-	3
-	•
٠,	•
E	9
٠.	
U	

	\$ \$ 1	7 _ 6 7 - 6 7	
Sex: Male	Group:Status: Final phase sacrifice	1	Dose level: 0.0 mg/kg/day
death: Zy Dosing Phase	;	Microscopic observations /	Comments
	£ \$ - 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 6 7 6 7	CHRONIC INFLAMMATION, Focal, Slight, Myocardial	Slight, Myocardial.
Heart		NEPHROPATHY, Focal, Slight, Unilateral.	Unilateral.
Kidneys		INFLAMMATORY CELL INFILTRATION, Focal, Slight, Unilateral.	ON, Focal, Slight,
Liver		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	ifocal, Slight,
		BILE DUCT PROLIFERATION, Multifocal, Slight.	ltifocal, Slight.
Lungs Abnormal area(s), Dark		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.	al, Slight, Perivascular,
		ALVEOLAR HAEMORRHAGE, Focal, Slight.	, Slight.
Prostate		MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, Mald.	ILTRATION, Multifocal,
Thyroid		THYRO-GLOSSAL DUCT REMNANT, Present.	Present.
The following tissues are normal microscopically:	Adrenals Brocecum Epididymides Ile Parathyroid gl. Pit Seminal vesicles Sp	Bronchi Bone marrow Cervical nodes Colon Tieum Yectum Pituitary Rectum Spinal cord Spleen Thymus	Brain Duodenum Mesenteric nodes Sciatic nerve Stomach Urinary bladder

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	1			7	1
Animal: 36710008	Sex: Male Status:	Group: 1 Status: Final phase sacrifice	 	Dose level:	. 0.0 mg/kg/day
Day of deach. As account of the control of the cont	Gross observations / Comments	 	!	Microscopic observations / Comments	C.S.
	1		NEPHROPATHY	NEPHROPATHY, Multifocal, Slight, Bilateral.	Bilateral.
Kidneys			INFLANMATOF Perivascula	INFIAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	l, Slight,
			BILE DUCT !	BILE DUCT PROLIFERATION, Multifocal, Slight.	al, Slight.
			INFLAMMATO	INFLAMMATORY CELL FOCI, Focal, Mild.	1d.
sbung			ALVEOLAR H	AIVEOLAR HAEMORRHAGE, Focal, Slight.	ht.
Parathyroid gl			Tissue is missing.	nissing.	
Whole animal No abnormali	ities detected			5	
The following tissues are normal microscopically:		Adrenals Adrenals Epididymides Mesenteric nodes Sciatic nerve Stomach Trachea	Bronchi Cervical nodes Heart Pituitary Seminal vesicles Testes	Bone marrow Colon Ileum Prostate Spinal cord Thymus	Brain Duodenum Jejunum Rectum Spleen Thyroid

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

		151			
Animal: 36710010	Sex: Male Status:	Group: . Status: Final phase sacrifice	Group: 1 crifice	Dose level:	0.0 mg/kg/day
Takens Gross observ	Gross observations / Comments			Microscopic observations / Comments	ents
1	Abnormal contents, White, Mucoid	1.d	Tissue is	Tissue is unremarkable.	
	•		NEPHROPATI	NEPHROPATHY, Focal, Slight, Unilateral.	lateral.
Kidneys Liver Abnormal area (ea(s), Multiple, Dark, Pinpoint	rk, Pinpoint	INFLAMMATC	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	cal, Slight,
			BILE DUCT	BILE DUCT PROLIFERATION, Multifocal, Slight.	ocal, Slight.
sbung			INFLAMMAT Interstit	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.	Slight, Perívascular,
			PERIBRONC	PERIBRONCHIAL LYMPHOID HYPERPLASIA, Slight.	sIA, Slight.
Parathyroid gl			Tissue is	Tissue is missing.	, , , , , , , , , , , , , , , , , , ,
The following tissues are normal microscopically:	T a	Adrenals Adrecum Epididymides Pituitary Seminal vesicles Testes Urinary bladder	Bronchi Cervical nodes Heart Prostate Spinal cord Thymus	Bone marrow Br Colon Du Ileum Me Rectum So Spleen Si Thyroid Th	Brain Duodenum Mesenteric nodes Sciatic nerve Stomach Trachea

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Tissue Gross observations / Comments Tissue Gross observations / Comments Tissue Gross observations / Comments INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular. BILE DUCT PROLIFERATION, Multifocal, Slight. INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial. VASCULAR MINERALIZATION, Focal, Present. FRACMENT/S OF BONE, Focal, Present. Tissue not examined microscopically.	Animal: 36710012 Sex: Male Status: Final phase sacrifice	Dose level: 0.0 mg/kg/day
Abnormal shape, Swollen	rati	Microscopic observations / Comments
Abnormal shape, Swollen	Abnormal size,	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
Abnormal shape, Swollen		BILE DUCT PROLIFERATION, Multifocal, Slight.
Abnormal shape, Swollen		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Abnormal shape, Swollen		VASCULAR MINERALIZATION, Focal, Present.
Abnormal shape, Swollen		FRAGMENT/S OF BONE, Focal, Present.
	Abnormal shape,	Tissue not examined microscopically.
	The Iollowing classes are	

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710014 Sex: Male Sex: Male	Dose level: 0.0 mg/kg/day	
Day of death; 15 Recovery phase	6 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Tissue Gross observations / Comments	Microscopic observations / Comments	
Abnormal con	Tissue not examined microscopically.	
Tainnum Abnormal contents, Yellow, Mucoid	Tissue not examined microscopically.	
Liver Abnormal size, Small	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	
	BILE DUCT PROLIFERATION, Multifocal, Slight.	

The following tissues are normal microscopically:

Thymus

Lungs

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

7	69 69 69 67 67 68 6
Animal: 36710016 Sex: Male Status: Final phase sacrifice	Dose level: 0.0 mg/kg/day
Tissue Gross observations / Comments	Microscopic observations / Comments
Liver	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.
Tungs	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
	VASCULAR MINERALIZATION, Focal, Present.
Whole animal No abnormalities detected	
Thymus tissues are normal Thymus microscopically:	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710018 Sex: Male Status: Final phase sacrifice	Dose level: 0.0 mg/kg/day
rations / Comments	Microscopic observations / Comments
nodes Abnormal size, Enlarged/ up to 7x5x3mm	Tissue not examined microscopically.
Liver Abnormal size, Small	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.
	VASCULAR MINERALIZATION, Multifocal, Present.
ssues are normal	
midroscopically:	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710020 Sex: Male Group: 1	Dose level: 0.0 mg/kg/uar
Day of death: 15 Recovery phase	Status: Final Diase Status Children Communication Communic
	Microscopic observations / Comments
Tiesus Gross observations / Comments	91771651191157197167167167167167167167167167167167167167
TNFLAMMAIORY CELL FOCI, Multifocal, Slight,	INFLAMMATORY CELL FOCI, Multifocal, Slight,
Liver	Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.

Whole animal . . . No abnormalities detected

The following tissues are normal microscopically:

Thyn

Lungs

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

\$ 7 E 9	
Group: 2 Sex: Male	Dose level: 0.3 mg/kg/day
- 1	
Tissue Gross observations / Comments	Microscopic observations / Comments
Liver	INFLAMMATORY CELL FOCI, Multifocal, Mild, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.
Tungs	VASCULAR MINERALIZATION, Focal, Present.
Whole animal No abnormalities detected	

Thymus

The following tissues are normal microscopically:

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	[5]
Animal: 36710024 Sex: Male Status: Final phase sacrifice	Dose level: 0.3 mg/kg/day
ervations	/ Comments
	INFLANMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Multifocal, Slight.
	HEPATOCYIIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
Tungs	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Whole animal No abnormalities detected	

Thymus

The following tissues are normal microscopically:

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	Dose level: 0.3 mg/kg/day
Day or death: 22 Motoring France Microscopic observations / Comments Microscopic observations / Comments Tricens	Microscopic observations / Comments
	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.
	HEPAIOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
Thymus Abnormal area(s), Multiple, Red, Pinpoint/ left lobe	Tissue is unremarkable.

The following tissues are normal microscopically:

Lungs

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO:	
	Dose level: 0.3 mg/kg/day
Animal: 36710028 Sex: Male Status: Final phase sacrifice status: Final phase sacrifice	
rva	Microscopic observations / Comments
TOUGHT.	INFLANMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Multifocal, Slight.
	HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
Tungs	VASCULAR MINERALIZATION, Focal, Present.
Whole animal No abnormalities detected	

Thymus

The following tissues are normal microscopically:

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

		69-687-69-689-689-689-689-689-689-689-689-689-
	1	
Animal: 36710030		Dose level: 0.3 mg/kg/day
Day or solding the control of the co	tions / Comments	Microscopic observations / Comments
Liver		INFLAMMATORY CELL FOCI, Multifocal, Slight,
		BILE DUCT FROLIFERATION, Multifocal, Slight.
		HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
Tail Abnormal ax	Abnormal area(s), Multiple, Scab(s)/ up to lx1mm	SCAB/S, Present. CHRONIC INFLAMMATION, Focal, Mild.

The following tissues are normal microscopically:

Lungs

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	Velocity of the Victorian of the Market Alexander
Group: 3	LOSS LEVELL
Animal: 36710032 Sex. Mare Status: Final phase sacrifice	
į	
	(tions / Comments
	MEPHROPATHY, Multifocal, Slight, Unilateral.
Kidnevs Abnormal area(s), Two, Pale/ up to 2xmm, right	
	THET AMMADORY CELL FOCI, Multifocal, Slight,
Liver Abnormal area(s), Multiple, Dark, Pinpoint	Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.
	HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular,
	Mid-zonal.

The following tissues are normal microscopically:

Thymus

Lungs

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	7 6 & 7 6 \$
36710034 Sex: 29 Dosing phase	Dose level: 0.8 mg/kg/day
rrations / Comments	Microscopic observations / Comments
Abnormal colour, Pale	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Multifocal, Slight.
	HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal.
	HEPAIOCYTIC NECROSIS, Focal, Slight.
rungs	INFLANMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.

The following tissues are normal microscopically:

Thymus

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO .:	
Animal: 36710036 Sex: Male Status: Final phase sacrifice	Dose level: 0.8 mg/kg/day
nisana	Microscopic observations / Comments
	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.
	HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
	INFLANMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
	VASCULAR MINERALIZATION, Focal, Present.
Spleen Abnormal shape, Swollen	Tissue is unremarkable.
	Tissue is unremarkable.

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Tissue Gross observations / Comments INFLAMMATORY	- International Comments
	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
BILE	BILE DUCT PROLIFERATION, Multifocal, Slight.
HEPA. Mid-:	нвратосттіс нүрвкткорну, Mild, Centrilobular, Mid-zonal.
DEVIEW	ALVEOLAR HAEMORRHAGE, Multifocal, Slight.
	FRAGMENT/S OF BONE, Focal, Present.
Stomach Abnormal area(s), Single, Dark/ 2x2mm, glandular Tiss	Tissue is unremarkable.

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710040 Day of death: 29 Dosing phase	Sex: Ma	m
Tissue Gross observ	tions / Comments	Microscopic observations / Comments
Liver		INFLANMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
		BILE DUCT PROLIFERATION, Focal, Slight.
		HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal.
Lungs		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Whole animal No abnormalities detected	lities detected	

The following tissues are normal microscopically:

Thymus

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710042 Sex: Male Status: F.	Group: .Status: Final phase sacrifice	4	Dose level: 2.0 mg/kg/day
prisons Comments		Microscopic observations / Comments	/ Comments
	£ 9 9	NEPHROPATHY, Focal, Slight, Unilateral.	ht, Unilateral.
Liver Abnormal colour, Pale		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	Multifocal, Slight, ar.
Abnormal shape, Swollen		BILE DUCT PROLIFERATION, Focal, Slight.	Focal, Slight.
		HEPATOCYTIC HYPERTROPHY, Mild, Panlobular.	Mild, Panlobular.
		INFLAMMATORY CELL FOCI, Interstitial.	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Prostate		MIXED INFLAMMATORY CELL SLIGht.	MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, slight.
Seminal vesicles . Abnormal colour, Transparent		COLLOID DEPLETION, Slight.	at.
Stomach Abnormal size, Thickened/ glandular non glandular region	lar non glandular	Tissue is unremarkable.	
Thymus Abnormal size, Small		ATROPHY, Slight.	
The following tissues are normal C microscopically: E C C C C C C C C C C C C	Adrenals Bro Caecum Epididymides Hea Mesenteric nodes Par Sciatic nerve Spi Thyroid Tra	Bronchi Cervical nodes Colon Heart Parathyroid gl. Pituitary Spinal cord Urinary bladder	Brain Duodenum Jejunum Rectum Testes

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

••
2
>-
B
E
W

Animal: 36710044 Sex: Male Status: Final phase sacrifice	Dose level: 2.0 mg/kg/day
ervations / Comments	Microscopic observations / Comments
{ }	REACTIVE HYPERPLASIA, Mild.
Cervical nodes	NEPHROPATHY, Focal, Slight, Bilateral.
<pre>Kidneys Abnormal area(s)/ multiple, dark, pinpoint; single, Liver Abnormal area(s)/ multiple, dark, pinpoint; single, pale, firm, 17x15x7mm, c/s dark and pale, firm, right</pre>	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Intralobular.
caudal caudate lobe	ners wire poor.remparion. Miltifocal, Slight.
Abnormal size, Enlarged	\$ C
	HEPATOCYTIC HYPERTROPHY, Mild, Faniodura:
	HEPATOCYTIC NECROSIS, Multifocal, Marked, Right caudal caudate lobe.
	AGGREGATIONS OF ALVEOLAR MACROPHAGES, Focal, Slight.
	Tissue is missing.
Paratity total garage and a second a second and a second	MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, slight.
an impos	COLLOID DEPLETION, Slight.
Thymus	ATROPHY, Slight.
Urinary bladder	PROTEINACEOUS PLUG, Present.

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	Animal: 36710044 Sex: Male Group: 4 Dose level: 2.0 mg/kg/day Day of death: 29 Dosing phase Status: Final phase sacrifice Microscopic observations / Comments Microscopic observations / Comments	llowing tissucopically:
--	--	-------------------------

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	W	
Animal: 36710046 Sex: Male Status:	Group: 4 Status: Final phase sacrifice	Dose level: 2.0 mg/kg/day
nisens / Comments	3	Microscopic observations / Comments
		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Interstitial.
		BILE DUCT PROLIFERATION, Focal, Slight.
		HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal.
bhnormal colour, Bed		INFLAMMATORY CELL FOCI, Focal, Slight.
Lungs Spind		AGGREGATIONS OF ALVEOLAR MACROPHAGES, Multifocal, Slight.
		DEVELPMENTAL CYST(S), Present.
Prostate		MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, Slight.
The following tissues are normal microscopically:	Adrenals Bronchi Caecum Cervica Epididymides Heart Kidneys Mesente Sciatic nerve Seminal Stomach Testes Trachea Urinary	Bronchi Bronchi Cervical nodes Colon Heart Ileum Mesenteric nodes Parathyroid gl. Rectum Seminal vesicles Spinal cord Testes Urinary bladder

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

1 1 1 1 5 1 1 1 1 1	
Animal: 36710048 Sex: Male Status: Final phase sacrifice	Dose level: 2.0 mg/kg/day
death: Zw Dosing Phase	Microscopic observations / Comments
 	REACTIVE HYPERFLASIA, Slight.
Cervical nodes	NEPHROPATHY, Focal, Slight, Unilateral.
Kidneys	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
negran rows	BILE DUCT PROLIFERATION, Focal, Slight.
	HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal.
	HEPATOCYTIC NECROSIS, Multifocal, Mild.
	CHRONIC INFLAMMATION, Focal, Moderate, with mineralization.
	INFLADMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
	AGGREGATIONS OF ALVECLAR MACROPHAGES, Focal, Slight.
Prostate	MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, Slight.
Thymus	ATROPHY, Slight.
Urinary bladder	PROTEINACEOUS PLUG, Fresenc.

4-WEEK ORAL TOXICITY STUDY IN RAIS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710048 Day of death: 29 Dosing phase	Sex: Male Status:	Sex: Male Group: 'Sex: Male Status: Final phase sacrifice	4.	Dose level:	Dose level:	2.0 mg/kg/day
	Gross observations / Comments			Microscopic observations / Comments	1	
The following tissues are normal microscopically:		Adrenals Caecum Heart Parathyroid gl. Seminal vesicles Testes	Bronchi Colon Ileum Pituitary Spinal cord Thyroid		Brain Epididymides Mesenteric nodes Sciatic nerve Stomach	ides ic nodes nerve

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710050 Sex: Male Dav of death: 29 Dosing phase Status:	Group:	T-	Dose level: 2.0 mg/kg/day
Tissue Gross observations / Comments	811115311115911159	Microscopic observations	/ Comments
Adrenals Abnormal size, Small/ Imm diam left	n left	Tissue is unremarkable.	
		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	Multifocal, Slight, .ar.
Abnormal shape, Swollen		BILE DUCT PROLIFERATION, Multifocal, Slight.	Multifocal, Slight.
	•	HEPATOCYTIC HYPERTROPHY, Mild, Panlobular.	. Mild, Panlobular.
		INFLAMMATORY CELL FOCI, Interstitial.	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
		AGGREGATIONS OF ALVEOLAR MACROPHAGES, Focal,	R MACROPHAGES, Focal, Slight.
		VASCULAR MINERALIZATION, Focal, Fresent.	, Focal, Present.
		ALVEOLAR HAEMORRHAGE, Focal, Slight.	ocal, Slight.
Parathyroid ql		Tissue is missing.	
Prostate		MIXED INFLAMMATORY CELL Slight.	MIXED INFLAMMATORY CELL INFILTRATION, Multifocal, Slight.
Seminal vesicles . Abnormal colour, Transparent		COLLOID DEPLETION, Slight.	ht.
Thymus Abnormal size, Small		Tissue is unremarkable.	
The following tissues are normal microscopically:	Bronchi Cervical nodes Co Heart Mesenteric nodes Pi	Bone marrow Brain Colon Duodenum Ileum Jejunum Pituitary Rectum Spleen Stomeon	Caecum Epididymides Kidneys Sciatic nerve Testes

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Group: 4 Animal: 36710052 Dav of death: 15 Recovery phase Sex: Male	Dose level: 2.0 mg/kg/day
missing	Microscopic observations / Comments
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tissue not examined microscopically.
Liver Abnormal size, Enlarged	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.
	HEPARCCYTIC HYPERTROPHY, Mild, Panlobular.
	HEPATOCYTIC NECROSIS, Focal, Mild.
sbung	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
	ALVEOLAR HAEMORRHAGE, Focal, Slight.
Seminal vesicles . Abnormal colour, Transparent	Tissue not examined microscopically.
Thymus Abnormal size, Small	Tissue is unremarkable.

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Group: 4 Animal: 36710054 Sex: Male Status: Final phase sacrifice nav of death: 15 Recovery phase	Dose level: 2.0 mg/kg/day
Tisking Gross observations / Comments	Microscopic observations / Comments
	Tissue not examined microscopically.
Abnormal area(s), Single, Pale/ 4x2mm, right	
Liver	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Multifocal, Slight.
	HEPATOCYTIC HYPERTROPHY, Mild, Panlobular.
Mesenteric nodes . Abnormal colour, Two, Dark	Tissue not examined microscopically.
	Tissue not examined microscopically.
Thymus Abnormal size, Small	ATROPHY, Moderate.
Head Abnormal area(s), Single, Scab(s)/ 7x4mm, muzzle, 9ABN SKIN 1)	
The following tissues are normal	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

1010	6 7 1 4 6 7 1 4 5 1 1 4 7 1 4 7 1 4 7 1 4 7 1 4 8 7 1 4 8 7 1 4 8 7 1 8 7
Animal: 36710056 Sex: Male Status: Final phase sacxifice	Dose level: 2.0 mg/kg/day
death: 15 Recovery phase	Microscopic observations / Comments
Tissue	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.
	HERATOCYTIC HYPERTROPHY, Mild, Panlobular.
rungs	VASCULAR MINERALIZATION, Multifocal, Present.
Whole animal No abnormalities detected	
The following tissues are normal Thymus microscopically:	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Group: 4 Animal: 36710058 Sex: Male Status: Final phase sacrifice Status: Final phase sacrifice	Dose level: 2.0 mg/kg/day
Tissus Gross observations / Comments	Microscopic observations / Comments
	Tissue not examined microscopically.
Abnormal area(s), Single, Pale/ 6x3mm, left	
Liver Abnormal size, Enlarged	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
Aknormal shabe. Swollen	BILE DUCT PROLIFERATION, Focal, Slight.
	HEPATOCYTIC HYPERTROPHY, Mild, Panlobular.
nugs	INFLAMMATORY CELL FOCI, Focal, Slight, Perlvascular, Interstitial.
	VASCULAR MINERALIZATION, Focal, Present.
Stomach Abnormal contents, Yellow, Mucoid	Tissue not examined microscopically.
Thymus microscopically:	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Group: 4	
Status: Final phase sa	Dose level: 2.0 mg/kg/day
vations / Comments	Microscopic observations / Comments
	INFLANMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
ETIS	BILE DUCT PROLIFERATION, Focal, Slight.
HEPA	HEPATOCYTIC HYPERTROPHY, Mild, Panlobular.
INFL Lungs	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
AGGF	AGGREGATIONS OF ALVEOLAR MACROPHAGES, Focal, Slight.
VASC	VASCULAR MINERALIZATION, Focal, Present.
Head Staining, Brown	
Thymus tissues are normal Thymus	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

			1 - 4 - 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	
Animal: 36710001 Sex: Female S	Group: . Status: Final phase sacrifice	Group: 1 crifice	Dose level:	0.0 mg/kg/day
Tissue Gross observations / Comments	ents	Microscopic	Microscopic observations / Comments	
		INFLAMMATON Perivascul	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	, Slight,
		BILE DUCT	BILE DUCT PROLIFERATION, Focal, Slight.	ight.
sbung		INFLAMMATORY Interstitial.	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.	ght, Perivascular,
Thymus Abnormal colour, Red/ left lobe	ft lobe	Tissue is	Tissue is unremarkable.	
The following tissues are normal microscopically:	Adrenals Caecum Duodenum Kidneys Parathyroid gl. Spinal cord Trachea	Bronchi Cervical nodes Heart Mesenteric nodes Pituitary Spleen Urinary bladder	Bone marrow Cervix Ileum Ovaries Rectum Stomach Uterus	Brain Colon Jejunum Oviducts Sciatic nerve Thyroid

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710003 Day of death: 30 Dosing phase Sex: Female Status	Group: Status: Final phase sacrifice	Group: 1 crifice	Dose	Dose level: 0.0 mg/kg/day
Tissue Gross observations / Comments	# # #	Microscop	Microscopic observations / Comments	Comments
Kidneys Abnormal colour, Pale		Tissue is	Tissue is unremarkable.	
Liver		INFLAMMAT Perivascu	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	ltifocal, Slight,
		BILE DUCT	PROLIFERATION, M	BILE DUCT PROLIFERATION, Multifocal, Slight.
		INFLAMMATORY Interstitial.	ORY CELL FOCI, Fo.	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Pituitary		DEVELPMEN	DEVELPMENTAL CYST(S), Present.	ent.
The following tissues are normal microscopically:	Adrenals Caecum Duodenum Mesenteric nodes Rectum Stomach Urinary bladder	Bronchi Cervical nodes Cervical nodes Ovaries Sciatic nerve Thymus	Bone marrow Cervix Ileum Oviducts Spinal cord Thyroid	Brain Colon Jejunum Parathyroid gl. Spieen Trachea

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710005 Sex: Female Dav of death: 30 Dosing phase Status	Group: 1 Status: Final phase sacrifice	Dose level: 0.0 mg/kg/day
Tissue Gross observations / Comments	7	Microscopic observations / Comments
		CHRONIC INFLAMMATION, Focal, Slight, Myocardial
Ileum Abnormal contents, Yellow, Mucoid	coid	Tissue is unremarkable.
Kidnevs		NEPHROPATHY, Focal, Slight, Unilateral.
Liver		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Intralobular.
		BILE DUCT PROLIFERATION, Multifocal, Slight.
Tungs		INFLAMMATORY CELL FOCT, Multifocal, Slight, Perivascular, Interstitial.
Uterus		GLANDULAR DILATATION, Focal, Slight.
The following tissues are normal microscopically:	Adrenals Bronchi Caecum Cervical Duodenum Jejunum Oviducts Parathy Sciatic nerve Spinal Thymus Thyroid	Brain Bronchi Bone marrow Brain Bronchi Cervix Celon Jejunum Barathyroid gl. Pituitary Spinal cord Trachea Urinary bladder

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710007 Sex: Female Status: Final phase sacrifice Day of death: 30 Dosing phase	Dose level: 0.0 mg/kg/day
Tissue Gross observations / Comments	Microscopic observations / Comments
Kidneys	INFLAMMATORY CELL INFILTRATION, Focal, Slight, Unilateral.
Liver Abnormal size, Small	INFLAMMATORY CELL FOCI, Multifocal, Mild, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Multifocal, Slight.
Inngs	VASCULAR MINERALIZATION, Focal, Present.
Ovaries Abnormal size, Enlarged/ up to 7x5x3mm	LUTEIN CYST, Unilateral, Present.
Spleen Abnormal shape, Swollen	Tissue is unremarkable.

Brain Colon Jejunum Pitultary Stomach Urinary bladder

Bone marrow Cervix Ileum Parathyroid gl. Spinal cord Trachea

Bronchi Cervical nodes Heart Oviducts Sciatic nerve Thyroid

Adrenals
Caecum
Duodenum
Mesenteric nodes
Rectum
Thymus

The following tissues are normal microscopically:

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710009 Day of death: 30 Dosing phase	Sex: Female Status: Fi	Group: 1 Status: Final phase sacrifice	Dose level: 0.0 mg/kg/day
Tissue Gross observations / Comments	!]	ິບ
Liver			INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
			BILE DUCT PROLIFERATION, Multifocal, Slight.
sbung			INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Parathyroid gl			Tissue is missing.
Stomach			INFLAMMATORY CELL INFILTRATION, Focal, Slight, Limiting ridge.

	Brain Colon Jejunum Oviducts Spinal cord Trachea
	Bone marrow Cervix Ileum Ovaries Sciatic nerve Thyroid
	Bronchi Cervical nodes Heart Mesenteric nodes Rectum Thymus Uterus
	Adrenals Caecum Duodenum Kidneys Pituliary Spleen Urinary bladder
	The following tissues are normal microscopically:

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

0.0 mg/kg/day BILE DUCT PROLIFERATION, Multifocal, Slight. INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular. Tissue not examined microscopically. Tissue not examined microscopically. Microscopic observations / Comments Dose level: Status: Final phase sacrifice Ileum Abnormal contents, Yellow, Mucoid Jejunum Abnormal contents, Yellow, Mucoid Gross observations / Comments Sex: Female Liver Abnormal size, Small Animal: 36710011 Day of death: 15 Recovery phase Tissue

The following tissues are normal microscopically:

Lungs

Thymus

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	Dose level: 0.0 mg/kg/day
Gross observations / Comments	Microscopic observations / Comments
ents, Yellow, Mucoid	Tissue not examined microscopically.
Liver Abnormal size, Small	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Multifocal, Slight.
Stomach Abnormal contents, White, Granular	Tissue not examined microscopically.
The following tissues are normal Inngs Thymus microscopically:	Lungs

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	States Fried Visual Vis
Tissue Gross observations / Comments	ı
Liver Abnormal size, Small	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
Abnormal colour, Pale	BILE DUCT PROLIFERATION, Multifocal, Slight.
Skin Staining, Brown/ neck	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Gross observations / Comments INFLAMMATORY CELL FOCI, Perivascular, Intralobul BILE DUCT PROLIFERATION, INFLAMMATORY CELL FOCI, INTRAMMATORY CELL FOC	Animal: 36710017 Day of death: 15 Recovery phase	Sex: Female Status: Final phase	0
οwn/ neck		tions / Comments	Microscopic observations / Comments
own/ neck	Liver		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
own/ neck			BILE DUCT PROLIFERATION, Multifocal, Slight.
own/ neck Thymus	sbung		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
own/ neck			VASCULAR MINERALIZATION, Focal, Present.
	:	rown/ neck	
	The following tissues are normal		

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710019 Day of death: 15 Recovery phase		e level:
Tissue Gross observat	Gross observations / Comments	
Liver		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
		BILE DUCT PROLIFERATION, Multifocal, Slight.
Tungs		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Whole animal No abnormalities detected	ies detected	

The following tissues are normal Thymus microscopically:

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710021 Day of death: 30 Dosing phase	Sex: Female Group: 2 Status: Final phase sacrifice	Dose level: 0.3 mg/kg/day
>	Gross observations / Comments	ations / Comments
		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
		BILE DUCT PROLIFERATION, Focal, Slight.
Tungs sbung		VASCULAR MINERALIZATION, Focal, Present.
Whole animal No abnormaliti	ties detected	
The following tissues are normal microscopically:	Thymus	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Tissue Gross observations / Comments Liver	מייות לייות מייות	Status: Final phase sacrifice	:Toxol exor	0.3 mg/kg/day
nal No abnormalities detected, Single	Gross observa		Microscopic observations / Comments	
No abnormalities detected, Single			INFLAMMATORY CELL FOCI, Multifocal, Sli Perivascular, Intralobular.	
No abnormalities detected, Single			BILE DUCT PROLIFERATION, Multifocal, Sl	Slight.
	sbun		ALVECLAR HAEMORRHAGE, Focal, Slight.	
		d, Single		

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

IODY NO.:

Animal: 36710025 Day of death: 30 Dosing phase	Sex: Female Status: Final phase sacrifice	Group: 2 ase sacrifice	Dose level:	0.3 mg/kg/day
Tissue Gross obser	Gross observations / Comments	E	bservations / C	omments
Liver	! !	INFLANMATORY Perivascular,	CELL FOCI, Multifocal, S Intralobular.	light,
			BILE DUCT PROLIFERATION, Multifocal, Slight.	Slight.
Lungs			INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.	, Perivascular,
Whole animal No abnormalities detected	lities detected			
The following tissues are normal microscopically:	Thymus			

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710027 Day of death: 23 Dosing phase	Found dead	: 2 Dose level:	0.3 mg/kg/day
Tissue Gross obser	ations		
Liver Abnormal are	Abnormal area(s), Two, Ruptured/ up to 8x4mm, right, left median lobe	lght, INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	jht,
		HAEMORRHAGE, Multifocal, Mild.	
Lungs Abnormal colour,	lour, Pale	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.	erivascular,
		FRAGMENT/S OF BONE, Focal, Present.	

CONGESTION/HAEMORRHAGE, Slight. Abnormal colour, Red Thymus

Abnormal area(s), Multiple, Dark, Pinpoint/ right lobe

HYDROMETRA, Bilateral, Slight. Abnormal size, Distended/ 5mm diam Uterus

Abnormal contents, Clear, Fluid

Abdominal cavity . Abnormal contents, Dark red/ fluid and soft

The following tissues are normal	Adrenals	Bronchi	Bone marrow	Brain
microscopically:	Caecum	Cervical nodes	Cervix	Colon
	Duodenum	Heart	Ileum	Jejunum
	Kidneys	Mesenteric nodes	Ovaries	Oviducts
	Parathyroid gl.	Pituitary	Rectum	Sciatic nerve
	Spinal cord	Spleen	Stomach	Thyroid
	Trachea	Urinary bladder		

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

0.3 mg/kg/day INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial. BILE DUCT PROLIFERATION, Multifocal, Slight. INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular. VASCULAR MINERALIZATION, Focal, Present. Microscopic observations / Comments Dose level: Sex: Female Group: 2 Status: Final phase sacrifice Thymus Gross observations / Comments Whole animal . . . No abnormalities detected The following tissues are normal microscopically: Animal: 36710029 Day of death: 30 Dosing phase Tissue

Volume II

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

0.8 mg/kg/day Dose level: Group: 3 Status: Final phase sacrifice Sex: Female Animal: 36710031 Day of death: 30 Dosing phase

INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.

Microscopic observations / Comments

BILE DUCT PROLIFERATION, Multifocal, Slight.

Gross observations / Comments

Tissue

Liver

Whole animal . . . No abnormalities detected

The following tissues are normal microscopically:

Thymus

Lungs

Volume~II

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

Animal: 36710033 Day of death: 30 Dosing phase		Group: 3 Status: Final phase sacrifice	Dose level:	0.8 mg/kg/day
Tissue Gross observa			tions / Comments Microscopic observations / Comments	
Liver			INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	Light,
			BILE DUCT PROLIFERATION, Multifocal, Slight.	Slight.
sbung			INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.	, Perivascular
Skin Staining, Brown/ neck	rown/ neck			
Head Staining, Brown	rown			

Thymus

The following tissues are normal microscopically:

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710035 Sex: Female Group: 3 Day of death: 30 Dosing phase	Dose level: 0.8 mg/kg/day
Gross observa	/ Comments
Liver	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Multifocal, Slight.
Pungs	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Thymus Abnormal colour, Red/ left lobe	Tissue is unremarkable.
Uterus Abnormal size, Distended/ 4mm diam	GLANDULAR DILATATION, Multifocal, Slight.
Abnormal contents, Clear, Fluid	HYDROMETRA, Bilateral, Mild.

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

emale Status:	ose
vations / Comments	Microscopic observations / Comments
Liver	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Multifocal, Slight.
Lungs	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Interstitial.
	ALVEOLAR HAEMORRHAGE, Multifocal, Mild.
Ovaries Abnormal size, Enlarged/ up to 8x4x3mm	Tissue is unremarkable.
Spleen Abnormal shape, Swollen	Tissue is unremarkable.
Thymus Abnormal area(s), Multiple, Red, Pinpoint	Tissue is unremarkable.

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710039 Day of death: 30 Dosing phase	Sex: Female Group: 3 Status: Final phase sacrifice	Dose level: 0.8 mg/kg/day
Tissue Gross observ		Microscopic observations / Comments
Liver		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
		BILE DUCT PROLIFERATION, Multifocal, Slight.
<pre>Lungs Abnormal are right lobes;</pre>	Abnormal area(s), Multiple/ dark red up to 7x4mm, right lobes; red pinpoint left, right caudal lobes	INFLANMATORY CELL FOCI, Multifocal, Slight, Perivascular, Interstitial.
		ALVEOLAR HAEMORRHAGE, Multifocal, Mild.

The following tissues are normal microscopically:

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

	Sex: Female Status: Final phase sacrifice	Dose level: 2.0 mg/
]]	AN JEE 20 40 40 40 TEE EN TO GO TEE CO TE	Microscopic observations / Comments
Liver		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
		BILE DUCT PROLIFERATION, Focal, Slight.
		HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
Lungs		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Uterus		HYDROMETRA, Bilateral, Slight.
Whole animal No abnormalities detected	detected	

The following tissues are normal	Adrenals	Bronchi	Bone marrow	Brain
microscopically:	Caecum	Cervical nodes	Cervix	Colon
	Duodenum	Heart	Ileum	Jejunum
	Kidneys	Mesenteric nodes	Ovaries	Oviducts
	Parathyroid gl.	Pituitary	Rectum	Sciatic nerve
	Spinal cord	Spleen	Stomach	Thymus
	Thyroid	Trachea	Urinary bladder	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 30/10043 Day of death: 30 Dosing phase	Sex: Female Status: Final phase sacrifice	Group: 4 crifice	asoo	Dose level: 2.0 mg/kg/day
	Comments	Microscopi	Microscopic observations / Comments	Comments
Liver		INFLAMMATO Perivascul	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Interstitial.	tifocal, Slight,
		BILE DUCT	PROLIFERATION, MU	BILE DUCT PROLIFERATION, Multifocal, Slight.
		HEPATOCYTI Mid-zonal.	C HYPERTROPHY, Mi	HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal.
Iungs		INFLAMMATO Interstiti	RY CELL FOCI, Foc al.	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
		AGGREGATIO	NS OF ALVEOLAR ME	AGGREGATIONS OF ALVEOLAR MACROPHAGES, Focal, Slight.
Parathyroid gl		Tissue is missing.	missing.	
Uterus		GLANDULAR	GLANDULAR DILATATION, Multifocal, Slight.	ifocal, Slight.
Skin Staining, Brown/ neck	neck			
The following tissues are normal microscopically:	Adrenals Caecum Duodenum Kidneys Pituitary Spleen Trachea	Bronchi Cervical nodes Heart Mesenteric nodes Rectum Stomach	Bone marrow Cervix Ileum Ovaries Sciatic nerve Thymus	Brain Colon Jejunum Oviducts Spinal cord Thyroid

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

2.0 mg/kg/day AGGREGATIONS OF ALVEOLAR MACROPHAGES, Focal, Slight. HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal. INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular. BILE DUCT PROLIFERATION, Focal, Slight. NEPHROPATHY, Focal, Slight, Bilateral. Microscopic observations / Comments Dose level: Status: Final phase sacrifice Gross observations / Comments Sex: Female Animal: 36710045 Day of death: 30 Dosing phase

Whole animal . . . No abnormalities detected

The following tissues are normal	Adrenals	Bronchi	Bone marrow	Brain
microscopically:	Caecum	Cervical nodes	Cervix	Colon
	Duodenum	Heart	Ileum	Jejunum
	Mesenteric nodes	Ovaries	Oviducts	Parathyroid gl.
	Pituitary	Rectum	Sciatic nerve	Spinal cord
	Spleen	Stomach	Thymus	Thyroid
	Trachea	Urinary bladder	Uterus	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710047 Day of death: 30 Dosing phase	Sex: Female Status: Final phase sacrifice	Group: 4 sacrifice	eson I	bose ievel: ∠.∪ mg/kg/αay
Tissue Gross observations / Comments	ons / Comments		Microscopic observations / Comments	
Liver Abnormal colour, Pale	Pale	1 1 1 1 1 1 1 1 1	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.	tifocal, Slight,
			BILE DUCT PROLIFERATION, Focal, Slight.	cal, Slight.
			HEPATOCYTIC HYPERTROPHY, Mild, Centrilobular, Mid-zonal.	ld, Centrilobular,
Tungs sbung			INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Interstitial.	tifocal, Slight,
			ALVEOLAR HAEMORRHAGE, Multifocal, Mild.	focal, Mild.
Thymus sumAth			ATROPHY, Slight.	
Uterus			GLANDULAR DILATATION, Multifocal, Slight.	focal, Slight.
			HYDROMETRA, Bilateral, Mild.	
The following tissues are normal microscopically:	Adrenals	Bronchi	Bronchi Gervical nodes Cervix	Brain Colon
	Caccin	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 TO TO TO

					- 8
ng tissues are normal	Adrenals	Bronchi	Воле тагком	Brain	
ally:	Caecum	Cervical nodes	Cervix	Colon	
	Duodenum	Heart	Ileum	Jejunum	
	Kidneys	Mesenteric nodes	Ovaries	Oviducts	
	Parathyroid gl.	Pituitary	Rectum	Sciatic nerve	
	Spinal cord	Spleen	Stomach	Thyroid	
	Trachea	Urinary bladder			

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Tissue Gross observations / Comments Liver	Animal: 36710049 Day of death: 30 Dosing phase	Sex: Female Status: Final phase sacrifice	: 4 Dose Level: 2.0 mg/kg/day ce
		! !	
	Liver		[E
			BILE DUCT PROLIFERATION, Focal, Slight.
			HEPATOCYTIC HYPERIROPHY, Mild, Centrilobular, Mid-zonal.
	Lungs		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Interstitial.
			ALVEOLAR HAEMORRHAGE, Multifocal, Slight.
imal No abnormalities detected	Ovaries		LUTEIN CYST, Unilateral, Present.
No abnormali	Thyroid		THYRO-GLOSSAL DUCT REMNANT, Present.
	:	lities detected	

· w	Adrenals	Bronchi	Bone marrow	Brain
microscopically:	Caecum	Cervical nodes	Cervix	Colon
	Duodenum	Heart	Ileum	Jejunum
	Kidneys	Mesenteric nodes	Oviducts	Parathyroid gl.
	Pituitary	Rectum	Sciatic nerve	Spinal cord
	Spleen	Stomach	Thymus	Trachea
	Urinary bladder	Uterus		

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Sex:	Dose level: 2.0 mg/kg/day
Tissue Gross observations / Comments	s / Comments
Liver	INFLANMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Multifocal, Slight.
	HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
Thymus Abnormal size, Small	Tissue is unremarkable.
Head Staining, Brown	
The following tissues are normal Lungs	

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Day of death: 15 Recovery phase Status: Final phase sacrifice	
tions / Comments	
Liver	INFLAMMATORY CELL FOCI, Multifocal, Mild, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Multifocal, Slight.
	HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
rungs	VASCULAR MINERALIZATION, Multifocal, Present.
Stomach Abnormal contents, Yellow, Soft	Tissue not examined microscopically.

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

STUDY NO.:

	Dose level: 2.0 mg/kg/day
Gross observations / Comments	Microscopic observations / Comments
Jejunum Abnormal contents, Yellow, Mucoid	ned microscopically.
Liver Abnormal area(s), Multiple, Dark, Pinpoint	INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
	BILE DUCT PROLIFERATION, Focal, Slight.
	HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
	INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.

The following tissues are normal microscopically:

Thymus

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710057 Day of death: 15 Recovery phase	Sex: Female Status: Final phase sacrifice	4 Dose level: 2.0 mg/kg/day
Tissue Gross obse	ហ្គ	
Liver		INFLAMMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
		BILE DUCT PROLIFERATION, Focal, Slight.
		HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
rungs spung		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
		AGGREGATIONS OF ALVEOLAR MACROPHAGES, Focal, Slight.
		VASCULAR MINERALIZATION, Focal, Present.
		ALVEOLAR HAEMORRHAGE, Focal, Slight.
Stomach Abnormal c	. Abnormal contents, Yellow, Mucoid	Tissue not examined microscopically.
Thymus Abnormal a	. Abnormal area(s), Multiple, Red/ up to 2x2mm	Tissue is unremarkable.

APPENDIX 12 - Macroscopic and microscopic observations - Individual data

Animal: 36710059 Sex: Day of death: 15 Recovery phase		Lose tevel: 4.0 mg/ kg/day
Tissue Gross observations / Comments		observations / Comments
Liver		INFLANMATORY CELL FOCI, Multifocal, Slight, Perivascular, Intralobular.
		BILE DUCT PROLIFERATION, Multifocal, Slight.
		HEPATOCYTIC HYPERTROPHY, Slight, Centrilobular, Mid-zonal.
Lungs		INFLAMMATORY CELL FOCI, Focal, Slight, Perivascular, Interstitial.
Thymus Abnormal area(s),	. Abnormal area(s), Multiple, Red, Pinpoint	Tissue is unremarkable.
Uterus Abnormal size, Distended/ 5mm diam	stended/ 5mm diam	Tissue not examined microscopically.
Uterus Abnormal contents, Clear, Fluid	, Clear, Fluid	
Head Staining, Brown		

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2

ADDENDUM I - Computer abbreviations and symbols

Abbreviations	Parameter names	Units
HCT	HAEMATOCRIT	%
RBC	RED BLOOD CELL COUNT	10^12/1
HGB	HAEMOGLOBIN	g/dl
MCV	MEAN RED BLOOD CELL VOLUME	fl
MCH	MEAN CORPUSCULAR HAEMOGLOBIN	pg
MCHC	MEAN CORPUSCULAR HAEMOGLOBIN CONCENTRATION	g/dl
PLT	PLATELETS	10^9/1
WBC	WHITE BLOOD CELL COUNT	10^9/J
NEU	NEUTROPHILS	%
LYM	LYMPHOCYTES	%
MON	MONOCYTES	%
EOS	EOSINOPHILS	%
BAS	BASOPHILS	%
LUC	LARGE UNSTAINED CELLS	%
PT	PROTHROMBIN TIME	sec
AP	ALKALINE PHOSPHATASE	U/l
ALT	ALANINE AMINOTRANSFERASE	U/l
AST	ASPARTATE AMINOTRANSFERASE	U/l
GGT	GAMMAGLUTAMYLTRANSFERASE	U/I
GLU	GLUCOSE	mg/dl
BILT	TOTAL BILIRUBIN	mg/dl
CHOL	TOTAL CHOLESTEROL	mg/dl
PROT	TOTAL PROTEIN	g/dl
NA	SODIUM	mmol/l
K	POTASSIUM	mmol/l
CA	CALCIUM	mmol/l
CL	CHLORIDE	mmol/l
UREA	UREA	mg/dl
CREA	CREATININE	mg/dl
VOL	URINE VOLUME (OVERNIGHT)	ml
SG	SPECIFIC GRAVITY	
PRO	PROTEIN	mg/dl
BLD	HAEMOGLOBIN	mg/dl
KET	KETONES	mg/dl
BIL	BILIRUBIN	mg/dl
URO	UROBILINOGEN	mg/dl
TRI	TRIGLYCERIDES	mg/dl
ALB	ALBUMIN	g/dl
GLO	GLOBULIN	g/dl
AGR	ALBUMIN/GLOBULIN RATIO	<i>G</i> ,

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2

WEEK RECOVERY PERIOD

ADDENDUM I - Computer abbreviations and symbols

Abbreviations	Parameter names	Units/Key
EPI	EPITHELIAL CELLS	0 = no cells or crystals
LEU	LEUCOCYTES	1 = few cells or crystals
ERY	ERYTHROCYTES	in some fields
CRY	CRYSTALS	2 = few cells or crystals
SPE	SPERMATOZOA	in all fields
ABN	ABNORMAL COMPONENTS	3 = many cells or crystals in all fields
APP	URINE APPEARANCE	0 = normal 1 = turbid
RED	REDUCING SUBSTANCES	0 = 0.0 - 2.5 g/l 1 = 2.5 - 7.5 g/l 2 = 7.5 - 10.0 g/l 3 = 10.0 - 20.0 g/l
Ctls SD Cervical nodes Mesenteric nodes	Control Standard deviation Cervical lymph nodes Mesenteric lymph nodes	
gl	Glands	

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

ADDENDUM II - Abbreviations of neurotoxicity tests

STIMULUS	S REACTIVITY	
APPR	APPROACH RESPONSE	 no reaction rat slowly approaches and sniffs or turns away rat freezes, actual muscle contractions more energetic response than 2) or 3) exaggerated reaction - jumps, bites, or attacks
TOUC	TOUCH RESPONSE	 no response rat may slowly turn or walk away, or vocalizations with little or no movement rat freezes, actual muscle contractions more energetic response than 2) or 3) exaggerated reaction - jumps, bites, or attacks
CLIK	CLIKER RESPONSE	 no reaction slight reaction, some evidence that noise was heard rat freezes, actual muscle contractions more energetic response than 2) or 3) exaggerated reaction - jumps, bites, or attacks
TAIL	TAIL PINCH RESPONSE	 no reaction rat may turn or walk forward, or vocalizations with little or no movement rat freezes, actual muscle contractions more energetic response than 2) or 3) exaggerated response - jumps, bites, or attacks
COUN	COUNT	The number of times the animal crosses the beam of the photoelectric cell.
BW		Body weight

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

ADDENDUM II - Abbreviations of neurotoxicity tests

Abbreviations	Parameter names	Key
PUPI	PUPIL RESPONSE	constriction of the pupil is noted with "+" and "-" indicates lack of response
RIGH	RIGHTING REFLEX	 normal, rat lands on feet slightly uncoordinated lands on side lands on back
GRI1/2/M	GRIP STRENGTH 1/2/MEAN	two readings (GRI 1 and GRI 2) are taken and averaged. Forelimb strength is evaluated by assessing the time (seconds) the animal grips on a horizontal bar
LAN1/2/M	LANDING FOOT SPLAY 1/2/MEAN	two readings are taken and averaged. Measurements of distance between ink blots (cm)

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

ADDENDUM III - Analytical method and validation report for formulation analysis and formulation analysis results

STUDY NO.:

WARNING AND SAFETY PRECAUTIONS

SAFETY

Organic solvents - all organic solvents must be treated as potentially hazardous and all procedures using them must be performed in a fume cupboard.

Appropriate eye protection, impervious gloves and lab coat should be worn.

This method requires the use of corrosive and toxic reagents. It is the responsibility of the analyst to perform the method consistent with safe laboratory practices. The analyst should wear eye protection, impervious gloves, and a lab coat when preparing standards and processing samples. Caution statements have been included in the method giving specific guidance to certain procedural steps. Detailed hazard information should be obtained from the current MSDS available from the manufacturer of the solvent or reagent.

FIRST AID

Solvents, acids and alkalis in contact with skin - wash with copious amounts of cold water. Splashes in the eye - irrigate with water and seek medical attention immediately.

Cuts - seek assistance of first aide immediately.

Burns and frostbite - run affected part under cold water (burns) or tepid water (frostbite) for 10 minutes and seek medical attention.

INTRODUCTION

1. SCOPE

This method of analysis describes the analysis of water.

2. FIELD OF APPLICATION

The method is described to be used for formulated product in water. The range of application is from 0.03mg/mL to 0.2mg/mL).

3. REFERENCES

ISO Standard 78/2-1982 Layout for standards - Part 2: Standard for Chemical Analysis

DEFINITIONS

4.

5.

in the formulation determined according to the described method and expressed as mg of analyte per ml test sample.

PRINCIPLE

The method essentially consists of five steps:

- Sampling
- Evaporation
- Esterification
- Extraction with 2,2,4 Trimethylpentane (Isooctane)
- GC/FID

6. REACTIONS

7. REAGENTS AND MATERIALS

Note: The reagents (and equipment) for which examples of their sources are quoted are known to be satisfactory, nevertheless reagents and equipment from other sources may be equally suitable. All the reagents must be of analytical grade or better.

7.1 Chemicals

2,2,4 Trimethylpentane (Isooctane) (Aldrich 360597)

reference standard batch 90409/86-I

Phenantrene Internal Standard. (Fluka 77470) batch 381400/1 10900

N-Hexane (Carlo Erba 46963)

Methanol (J.T. Baker 8402)

Water (produced by Easypure)

Ammonium hydroxide 32% (Merck 5426)

Sulphuric acid 98% (J.T. Baker 6163-1)

7.2 Solutions

Internal Standard:

About 8 mg are transferred into a 10mL volumetric flask and dissolved with N-Hexane obtaining a 800µg/mL solution. 1mL of this solution is transferred into a 10 ml volumetric flask and dissolved with Isooctane obtaining an 80µg/mL solution.

1% (W/W) H₂SO₄ in Methanol:

In a 250mL glass flask weigh 160g of Methanol and slowly add 1.7g of Sulphuric acid.

7.3 Standard solutions

7.3.1 Stock A:

Due to a difficulty in weighing the substance, about 30 mg of analytical standard are transferred into 10 ml volumetric flask and dissolved with Methanol. An adequate dilution was made to obtain a $2500\mu g/mL$ solution (Stock1).

7.3.2 Std 1:

50μL of Stock1 are diluted in 4950μL of water into a glass vial.

7.3.3 Std 2:

100μL of Stock1 are diluted in 4900μL of water into a glass vial.

7.3.4 Std 3:

150µL of Stock1 are diluted in 4850µL of water into a glass vial.

7.3.5 Low recovery (0.03mg/mL):

60μL of Stock1 are diluted in 4940μL of water into a glass vial.

7.3.6 High recovery (0.2mg/mL):

 $400\mu L$ of Stock1 are diluted in $4600\mu L$ of water into a glass vial. $1250\mu L$ of this solution are added in $3750\mu L$ of water into a glass vial

8. APPARATUS

Analytical balance Mettler AT 261 Delta range

GC Fisons Trace GC

Detector Flame ionisation detector
Software Empower Pro Build N°1154
Printer HP Laser Jet 4050 Series PCL6
Column ZB-1 30m x 0.32mm ID x 0.5μm FT

GC siring for OC Hamilton 80351

GC microvials Pasteur pipettes Volumetric pipettes Common glassware

Evaporator Reacti Therm III Pierce

Air circulation oven

9.

SAMPLING AND SAMPLES

Nature of the Sample; Samples shall be such as to enable the detection of substance in the relevant formulations.

Size of Sample; The size of the sample must be large enough to allow the method to be carried out and to allow repeated analysis where required.

The samples must be taken and packed in such a way as to allow proper identification in the laboratory.

The method of packing, preservation and transport must maintain the integrity of the sample and not prejudice the results of the examination. Samples for the analysis of must be stored at room temperature.

10.

PROCEDURE

10.1

Sampling

10.1.1

Calibration and recovery samples

Add $30\mu L$ of Ammonium hydroxide 32% to the sample. Evaporate the sample to dryness in the Reactitherm at about $60^{\circ}C$ with a gentle stream of nitrogen.

Add to the sample $500\mu L$ of 1% (W/W) H_2SO_4 in Methanol and heat the vials for 16 hours in a 70°C air circulation oven.

Add, at room temperature, $250\mu L$ of Isooctane, $50\mu L$ of ISTD and 2mL of water. Allow a good phase separation and then draw the superior phase for the analyses in GC.

10.1.2

Blank and unknown samples.

Samples are taken as follows:

		Expected					
Step	Action	0mg/mL	0.03mg/mL	0.08mg/mL	0.2mg/mL		
1	transfer	5mL	5mL	2.5mL	1.25mL		
	dilute with water to			5mL	5mL		

For other concentrations samples will be prepared with an appropriate dilution.

Transfer into GC vials.

10.1.3

GC

The following system is set up:

Column:

ZB-1 30 m x 0.32 mm ID x 0.5 μ m FT

Carrier:

Helium (2mL/Min)

Hydrogen:

30mL/Min

Air: 120mL/Min

Detector: Flame ionization detector (FID) 250°C

Injector On column at room temperature

Injection volume: 1µl

Oven: 40°C ----- 8°C/Min ----→250°C (10Min.)
Retention Time: 12 minutes for and 26.5

minutes for Phenantrene (ISTD)

Run time: 35 minutes

As a test of system suitability, inject 1µl of any of the Standard Curve Solutions and observe the retention time of the peak. To be acceptable, the retention time of the peak must fall in the range of 11 to 13 minutes. If the retention time of falls outside the acceptable range for the system suitability standard solution, the mobile phase (Carrier) must be adjusted in the following ways. If the retention time of the sis before 11 min. the mobile phase should be adjusted by increasing the carrier flow. Conversely, if the retention time of the safter 13 min. the mobile phase should be adjusted by decreasing the carrier flow.

The GC is calibrated using the chromatographic software which generates a linear calibration curve drawing the best fit of a line, to the amounts of the software uses linear fit formula. The result of the fitting is:

y = A + B*x

where

B = Slope of the calibration curve

A= Intercept

y = Response factor

x = amount in μg/mL

Unknown samples are injected after the GC calibration. Results of the amount in µg/mL are obtained directly from the GC report. The result is calculated by the software as:

$$x = (y-A)/B$$

EXPRESSION OF RESULTS

contents in matrix as μg/mL are obtained as follows:

 $C = (x \bullet FD) / 1000$

where:

11.

 $C = content of matter as \mu g/mL$

amount in $\mu g/mL$ as read in the chromatogram result table

FD = Dilution Factor

12. SPECIAL CASES

13. NOTES ON PROCEDURE

14. TEST REPORT

15. SCHEMATIC REPRESENTATION OF PROCEDURE

16. BIBLIOGRAPHY

Analytical method

17. VALIDATION RESULTS

17.1 Linearity

Calibration samples in triplicate at three levels ranging from $25\mu g/mL$ to $75\mu g/mL$ were processed as described in the analytical method. The following correlation was found:

Added ng/ml	Response (IS Analyte/ Analyte	Calculated Concentration	Deviation %
	area)	(ng/mL)	
25.16	0.308	27.512	-8.549
25.16	0.327	29.002	-13.246
25.16	0.287	25.773	-2.378
50.32	0.535	45.918	9.586
50.32	0.521	44.778	12.376
50.32	0.544	46.650	7.866
75.48	0.926	77.540	-2.656
75.48	0.953	79.738	-5.340
75.48	0.906	75.969	-0.644

Equation: Response = -0.031570 + 0.012348*

Conc.

0.986227

Response type: area Fit type: linear Weighting: none 17.2 Selectivity

No interfering peaks were present at the retention time.

17.3 Accuracy and precision

Sextuplicates at the following concentration were prepared and analysed:

Amount added	Amount found		Accuracy	Precision
μg/mL	μg/mL	Mean (μg/mL)	%	CV %
30.192	30.974 30.47 30.968 30.528 31.079 30.828	30.81	102.04	0.82
201.28	201.76 193.536 207.764 201.532 199.9 202.056	201.1	99.91	2.27

Chromatogram of a blank samples

Sample Information

Project Name: SampleName: Acq Method Set: 22-Mar-05 08:11:42 Date Acquired: Sample Type: Unknown 22-Mar-05 13:30:35 Date Processed: Vial: Processing Method: Injection: TraceGC System Name: Injection Volume: 1.00 ul Sample Set Name: Seduta 1 Validazione Channel: SATIN System Node: Run Time: 35.0 Minutes Acquired By: Riccir Label: Processing Method Id 5502 Channel ld 5430 Report Method ID 5540 Instrument Method Id 5271 Scala 100mV

	Peak Results							
	Name	RT	Area	Height	Amount	Units		
1		12.075						
2		19.500	487	-74				
3	Espantes no IS 713	25,546						

	Calibration Curve							
	Name	Date Calibrated	Α	В	R	R^2	Processing Method	
1		22-Mar-05 13:30:05	-3.261100e-002	1227606e-002	0.984386	0.969015		
2	Fenantrene ISTD	22-Mar-05 13:30:05	0.000000e+000	4.945317e+004	1.000000	1.0000000		

Chromatogram of a standard solution at approximately a 50 µg/mL

Sample Information

Acq Method Set: Project Name: Std 2 50µg/ml. 22-Mar-05 10:25:38 SampleName: Date Acquired: Sample Type. Standard 22-Mar-05 13:28:36 Date Processed: Vial: Processing Method: Injection: TraceGC System Name: Injection Volume: 1.00 ul Sample Set Name: Seduta 1 Validazione SATIN Channel: Capi System Node: 35.0 Minutes Run Time: Acquired By: Riccir Linearità Label: Processing Method ld 5502 Channel ld 5441 Report Method ID 5540 Instrument Method Id 5271 Scala 100mV 100.00 90.00 80.00-70,00 60.00 50.00 ⋛ 40.00-Fenantrene ISTD - 26,706 30.00-20.00-10.00-0.00--10.00 0.00

		Peak	Resul	ts		
	Name	RT	Area	Height	Amount	Units
1		7,441.4		L	50.320	μg/mil.
2	Fenantrene ISTD	26.706	48699	1962	1.000	µg/mŁ

10.00

5.00

				Calibrati	on Curve			
Γ		Name	Date Calibrated	А	В	R	R^2	Processing Method
ľ	1	(التعبير)	22-Mar-05 13:30:05	-3.261100e-002	1 227606e-002	0.984386	0.969015	
ı	2	Fenantrene ISTD	22-Mar-05 13:30:05	0.000000e+000	4.945317e+004	1,000000	1.000000	e strate de la companya de la

15.00

20.00

25.00

35.00

30.00

Expanded Chromatogram on Standard Solution

Sample Information

Acq Method Set: Project Name: 24-Mar-05 11.34.06 Std 2B 50µg/mL Date Acquired: SampleName: Sample Type: Standard 24-Mar-05 13,58.33 Date Processed: Vial: Processing Method Injection: TraceGC System Name; 1,00 ul Injection Volume: Sample Set Name: Seduta 2 SATIN Channel: System Node: Capi 35.0 Minutes Run Time; Acquired By: Riccir Controllo_Pesata Label: Processing Method Id 5667 Channel ld 5650 Report Method ID 6454 Instrument Method Id 5271 Scala 30mV 30.00 28.00 26.00 24.00 22.00 20,00 18.00 16.00

Fenantrene ISTD - 26,564 8.00-6.00 4.00 2.00 0.00 -2.00 0.00 30,00 35.00 10.00 15.00 20.00 25 00 5.00 Minutes

		Peak	Resul	ts		
	Name	RT	Area	Height	Amount	Units
1		12.087	32779	4665	49.968	µg/mL
2	Fenantrene ISTD	26.564	48567	1997	1.000	hg/wr

		C	alibration Curve			
	Name	Date Calibrated	А	8	R	R^2
1		24-Mar-05 13.58.45	0.000000e+000	1,347710e-002	0.315746	0.099696
2	Fenantrene ISTD	24-Mar-05 13.58.45	0.000000e+000	4.649375e+004	1.000000	1.000000

14.00

12.00 10.00

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

Formulation analysis - Pre-treatment - Content check

95 -105	99.38	0.1988	0.2	M-F	4-5
95 -105	98.00	0.0784	0.08	M-F	ω
95 -105	101.67	0.0305	0.03	M-F	2
ı	1	0	0	M-F	ş.i.ê
%	%	mg/ml	mg/ml	Sex	Group
Recovery	Decovery	Found	Intended		

H4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

Formulation analysis - Stability 6 days at room temperature - Content check

 96.42	0.1928	0.2	M-F	4-5
 99.27	0.02978	0.03	M-F	2
 Recovery	Found Concentration mg/ml	Intended Concentration mg/ml	Sex	Group

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

Formulation analysis - Day 1 of treatment - Content check

4	υs	2		Group
M-F	M-F	M-F	M- F	Sex
0.2	0.08	0.03	0	Intended Concentration mg/ml
0.1953	0.0798	0.03061	0	Found Concentration mg/ml
97.66	99.75	102.04	ı	Recovery
95 -105	95 -105	95 -105	J	Recovery Limits %

)4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

Formulation analysis - Day 1 of treatment for Toxicokinetic groups - Content check

			A STATE OF THE STA		
95 -105	103.97	0.2079	0.2	Ж-Ұ	4-5
ı	1	0	0	M-F	-
Recovery Limits %	Recovery	Found Concentration mg/ml	Intended Concentration mg/ml	Sex	Group

1.4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

Formulation analysis - Week 4 of treatment - Content check

4	(J.)	2	,—	Group
M-F	M-F	M-F	M-F	Sex
0.2	0.08	0.03	0	Intended Concentration mg/ml
0.2051	0.08132	0.02993	0	Found Concentration mg/ml
102.57	101.65	99.76	ŧ	Recovery %
95 -105	95 -105	95 -105	ŧ	Recovery Limits %

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

ADDENDUM IV - Analytical method and validation report for toxicokinetic analysis and toxicokinetic analysis results

STUDY NO.

WARNING AND SAFETY PRECAUTIONS

SAFETY

Organic solvents - all organic solvents must be treated as potentially hazardous and all procedures using them must be performed in a fume cupboard.

Appropriate eye protection, impervious gloves and lab coat should be worn.

This method requires the use of corrosive and toxic reagents. It is the responsibility of the analyst to perform the method consistent with safe laboratory practices. The analyst should wear eye protection, impervious gloves, and a lab coat when preparing standards and processing samples. Caution statements have been included in the method giving specific guidance to certain procedural steps. Detailed hazard information should be obtained from the current MSDS available from the manufacturer of the solvent or reagent.

FIRST AID

2.

Solvents, acids and alkalis in contact with skin - wash with copious amounts of cold water. Splashes in the eye - irrigate with water and seek medical attention immediately.

Cuts - seek assistance of first aider immediately.

Burns and frostbite - run affected part under cold water (burns) or tepid water (frostbite) for 10 minutes and seek medical attention.

1. INTRODUCTION

is a substance developed by the Sponsor.

Concentration is calculated considering following % distribution

SCOPE

The method of analysis describes the detection of in rat plasma.

FIELD OF APPLICATION

3.

5.

6.

7.

The method is described to be used for rat plasma in a range from approximately:

4.87 ng/ml about 4870 ng/ml for
0.95 ng/ml about 950 ng/ml for
2.35 ng/ml about 2350 ng/ml for
0.77 ng/ml about 770 ng/ml for
1.16 ng/ml about 1160 ng/ml for

4. REFERENCES

ISO Standard 78/2-1982 Layout for standards - Part 2: Standard for Chemical Analysis

DEFINITIONS

in rat plasma determined according to the described method and expressed as ng of analyte per ml test sample.

PRINCIPLE

The method essentially consists of four steps:

- Protein precipitation
- Evaporation
- Dissolution
- LC/MS/MS

REACTIONS

8. REAGENTS AND MATERIALS

Note: The reagents (and equipment) for which examples of their sources are quoted are known to be satisfactory, nevertheless reagents and equipment from other sources may be equally suitable. All the reagents must be of analytical grade or better.

8.1 Chemicals

Methanol HPLC grade (Baker 8402)

Water HPLC grade (produced by EASYPURE)

Ammonium Acetate (BDH 271424C)

Acetonitrile (Baker 9017)

Acetic acid (Carlo Erba 401391)

, can be ordered from the sponsor.

Diclofenac Sodium internal standard

Solutions 8.2 Ammonium Acetate 2mM pH=4.75 (100% CH₃COOH): 8.2.1 Weigh 154mg of Ammonium Acetate, add 800mL of water, adjusting to pH = 4.75 (± 0.1) with 100% Acetic Acid, transfer to a volumetric flask of 1000mL and adjust to the mark with water. Standard solutions 8.3 Stock A: 8.3.1 About 25 mg are transferred into a 25mL volumetric flask and dissolved with methanol obtaining a 1000µg/mL solution Sol 7A: 8.3.2 1.5mL Stock A are transferred into a 25mL volumetric flask and diluted with methanol obtaining a 60µg/mL solution. Sol 6A: 8.3.3 2mL Sol 7A are transferred into a 50mL volumetric flask and diluted with methanol obtaining a 2.4µg/mL solution. Sol 5A: 8.3.4 1.5mL Sol 7A are transferred into a 50mL volumetric flask and diluted with methanol obtaining a 1.8µg/mL solution. Sol 4A: 8.3.5 3mL Sol 5A are transferred into a 10mL volumetric flask and diluted with methanol obtaining a 0.54µg/mL solution. Sol 3A: 8.3.6 3mL Sol 4A are transferred into a 10mL volumetric flask and diluted with methanol obtaining a 0.162µg/mL solution. Sol 2A: 8.3.7 2mL Sol 4A are transferred into a 10mL volumetric flask and diluted with methanol obtaining a 0.108µg/mL solution. Sol 1A: 8.3.8 1mL Sol 4A is transferred into a 10mL volumetric flask and diluted with methanol obtaining a 0.054µg/mL solution.

8.3.9

Sol XA:

1mL Stock A is transferred into a 20mL volumetric flask and diluted with methanol obtaining a $50\mu g/mL$ solution.

8.3.10

Sol YA:

1.7mL Sol 7A are transferred into a 50mL volumetric flask and diluted with methanol obtaining a 2.04µg/mL solution.

8.3.11

Stock ISTD:

About 25 mg of Diclofenac Sodium are transferred into a 25mL volumetric flask and dissolved with methanol obtaining a lmg/mL solution.

8.3.12

ISTD:

0.5 ml Stock ISTD are transferred into a 100 mL volumetric flask and diluted with methanol obtaining a $5 \mu \text{g/mL}$ solution.

8.4

APPARATUS

Analytical balance

Mettler AT 261 Delta range or

Agilent 1100 or equivalent

equivalent

Evaporator

Pierce Reacti-Therm III or equivalent

HPLC
Detector(MS/MS)

API 2000 Applied Biosystem Analyst 1.4 Applied Biosystem

Software Printer Column

Hewlett-Packard LaserJet 2200 Phenomenex Gemini 5µm C18 110A

2*150 mm

Centrifuge Vortex ALC 4214 or equivalent New ZX VELP or equivalent

HPLC microvials

Eppendorff plastic tube 1.5mL

Volumetric pipettes Common glassware

9.

SAMPLING AND SAMPLES

Nature of the Sample; Samples shall be such as to enable the detection of residues in blood.

Size of Sample; The size of the sample must be large enough to allow the method to be carried out and to allow repeat analysis where required.

The samples must be taken and packed in such a way as to allow proper identification in the laboratory.

The method of packing, preservation and transport must maintain the integrity of the sample and not prejudice the results of the examination. Samples for the analysis of must be stored at temperatures below -18°C.

10.

PROCEDURE

10.1

Blank and unknown samples.

To $100\mu L$ of sample $300\mu L$ of Acetonitrile are added, vortexed and centrifuged for 5 minutes at 14000 rpm. Organic phase are collected, added $20\mu L$ of ISTD and evaporated to dryness under a gentle stream of nitrogen at about $37^{\circ}C$. Samples are reconstituted with $100\mu L$ of 70% Eluent A and 30% Eluent B and vortexed for 30 seconds. The liquid phase is transferred into glass HPLC vials and injected.

10.2

Calibration samples

To $100\mu L$ of rat plasma an adequate aliquot of working standard solution (see table below) is added.

Samples are then processed as previously described.

Concentrations obtained from the weighed amount of standard are corrected for the following percentage, as request by the Sponsor:

3.7	. 1.7. 1	From	conce	entration	in mat	rix (ng/r	nL)	ISTD Concentration
Name	Added	solution						ng/mL
Std 1		Sol 1A	≈5	≈2.5	≈1	≈l	≈1	
Std 2		Sol 2A	≈11	≈5	≈2	≈3	≈2	
Std 3	20. 1	Sol 3A	≈16	≈8	≈3	≈4	≈2	≈1000
Std 4	20μL	Sol 4A	≈53	≈25	≈10	≈13	≈8	≈1000
Std 5		Sol 5A	≈175	≈85	≈34	≈42	≈28	
Std 6		Sol 6A	≈234	≈113	≈46	≈56	≈37	

10.3

Accuracy and Precision samples (QC samples):

To 100 μ L of rat plasma an adequate aliquot of working standard solution (see table below) is added.

Samples are then processed as previously described.

Samples at 10000ng/mL are diluted with blank rat plasma 100-fold obtaining a final concentration of 100ng/mL.

Concentrations obtained from the weighed amount of standard are corrected for the following percentage, as request by the Sponsor:

Name	Added	From solution	co	ncentratio		rix (ng/ml		ISTD Concentration (ng/mL)
LLOQ		Sol 1A	≈5	≈2.5	≈1	≈l	≈l	
Medium QC		Sol 4A	≈53	≈25	≈10	≈13	≈8	:
Low QC	20μL	Sol 3A	≈l6	≈8	≈3	≈4	≈2	≈1000
High QC		Sol YA	≈199	≈96	≈39	≈47	≈31	
Extension level		Sol XA	≈4870	≈2350	≈950	≈1160	≈770	

10.4

LC-MS/MS and chromatographic conditions:

10.4.1

Chromatographic Conditions:

The following HPLC system is set up:

Phenomenex Gemini 5µm C18 110A Column:

2*150 mm

Column temperature

20°C

Mobile phase:

Eluent A:

Ammonium acetate 2mM pH=4.75

(100%

CH3COOH)

Eluent B: Elution:

Acetonitrile

Gradient

1	me in.)	Flow (ml/min)	A %	В%
	0	0.2	70	30
1	0	0.2	10	90
1	5	0.2	10	90
15	.10	0.2	70	30

0.2

70

Flow:

25

0.2 mL/min

Volume injects:

20µL

Autosampler temperature:

4°C

30

LC-MS/MS:

Scan Type:

Turbolon Spray, MRM

Polarity:

Negative

Q1 Mass	Q3 Mass	Retention time minutes
460.9	366.70	≈12.5
460.9	201.1	≈12.5
626.80	532.80	
626.80	200.8	≈15.3
626.80	366.80	
577.00	482.60	
577.00	200.80	≈14.4
577.00	316.50	
792.70	698.60	
792.70	366.70	≈18.0
792.70	532.70	
743.00	648.80	
743.00	201.10	≈17.5
743.00	482.60	~17.5
743.00	366.60	

Diclofenac Sodium	Q1 Mass	Q3 Mass	Retention time
IGED	294.10	250.00	11.2
ISTD	294.10	293.70	≈11.3

The LC-MS analysis is calibrated using the software Analyst which generates a linear fit calibration curve drawing the best fit of a line to the amounts of in ng/mL and the response factor peaks area (Std and ISTD). The software uses linear least-squares fit formula with a 1/X weighting. The result of the fitting is:

$$y = A + Bx$$

where

A = y-intercept of the calibration curve

B = Slope of the calibration curve

y = Response factor

 $x = \frac{1}{100}$ amount in ng/mL

Unknown samples are injected after the LC-MS calibration. Results of the amount in ng/mL are obtained directly from the LC/MS report. The result is calculated by the software as:

$$x = (y-A)/B$$

EXPRESSION OF RESULTS

contents in ng/mL are obtained directly from the chromatogram result table as follows:

C = x

Where:

C = content of as ng/mL as ng/mL as read in the chromatogram result table

- SPECIAL CASES
- 13. NOTES ON PROCEDURE
- 14. TEST REPORT

11.

12.

15.

SCHEMATIC REPRESENTATION OF PROCEDURE

16.

VALIDATION RESULTS

16.1

Linearity MW=

Calibration samples in single at six levels ranging from about 5 ng/mL to 250 ng/mL were processed as described in the analytical method. The following correlation was found:

Added	Response	Calculated	Deviation
ng/mL	(Analyte area/	Concentration	%
	IS area)	(ng/mL)	
5.5415	2.84e-002	5.3974	-2.60
11.083	3.48e-002	9.5196	-14.1
16.625	4.76e-002	17.693	6.43
55.415	1.19e-001	63.209	14.1
184.72	2.98e-001	178.21	-3.52
246.29	4.03e-001	245.64	-0.264

Equation:

Response = 0.02+0.00156*

0.9981 Response type: area

Fit type:

linear

Weighting:

1/X

16.2

Selectivity (-- MW=

For blank plasma samples no interfering peaks were present at the retention times.

Page 176

16.3

Accuracy and precision

16.3.1

(Low Level) (MW-MW-

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	18.019			
	17.487	17.946	107.95	2.38
16 605	17.997			
16.625 18.642 18.033	18.642	107.55	2.50	
	18.033			
	17.498			
	N =6			

N: number of samples used for calculations.

16.3.2

(Medium Level) (MW-MW-MW-

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
55.415	62.495 60.177 60.995 61.567 61.322 61.370	61.321	110.66	1.23
	N=6	<i>ii</i> .		

N: number of samples used for calculations.

16.3.3

(Highest Level) (MW=MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	nount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	219.67			
	236.85		102.44	6.76
200.25	206.43	214.46		
209.35	217.84	214.40		
	212.56	!		
	193.42			<u> </u>
	N=6			

N: number of samples used for calculations.

16.3.4

(Extension Level) (- MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	4397.6			
	4708.7			
5121.0	5199.3	4932.7	96.13	8.22
5131.0	5131.0 5137.5 4669.2 5483.7	4952.1	70.15	0.22
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	N =6			

N: number of samples used for calculations.

16.4

Lower Limit of Quantification (LLOQ)

The lowest standard on the calibration curve (5.5415 ng/mL) fulfilling the requirements for accuracy and precision will be considered as the Lower Limit of Quantification.

16.4.1

LLOQ (MW= MW= MW)

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	An	nount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	4.7846			
	5.7921		90.45	9.66
5.5415	5.4189	5.0122		
3,3413	4.8233	3.0122		
	4.5419 4.7123		L	
	N =6			

N: number of samples used for calculations.

16.5 Chromatogram of a blank plasma rat (M-MW=

Fig. 1 and 1	
Ann	
The state of the	
Control of the contro	
Control of the contro	
### Company Control of	
### 1	
200 100 100 100 100 100 100 100 100 100	
200 175 17 196 196 196 196 196 196 196 196 196 196	
200 200 200 200 200 200	
200 200 200 200 200 200	
200 	1.44
200 	
250 	
to company	
to company	
	!
j;	
, , , , , , , , , , , , , , , , , , ,	
144	
150	
,	
150	1
1	1
PHT:	1
(514	1
,	1
	l
101	ŀ
	1
197	l l
	i
•••	1
	i
	1
·=-:	1
	1
	1
and 4.5	1
- I	1
	i
rest te	i .
	- -
*17. T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Control Contro

17.

VALIDATION RESUTS (N3)

17.1

Linearity (MA)—MW

Calibration samples in single at six levels ranging from about 2 ng/mL to 120 ng/mL were processed as described in the analytical method. The following correlation was found:

Added ng/mL	Response (Analyte area/ IS area)	Calculated Concentration (ng/mL)	Deviation %
2.6740	2.06E-02	2.5582	-4.33
5.3481	3.52E-02	5.6827	6.26
8.0221	4.33E-02	7.4030	-7.72
26.740	1.43E-01	28.716	7.39
89.135	4.21E-01	88.171	-1.08
118.85	5.62E-01	118.23	-0.515

Equation Response: 0.00866+0.00468*

Response type:

area

Fit type: Weighting: linear 1/X

0.9994

17.2

For blank plasma samples no interfering peaks were present at the retention times.

17.3

Accuracy and precision

17.3.1

(Low Level) MW-MW-

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
8.0221	8.4086 8.5280 8.6370 8.9212 8.3437 8.4171	8.5426	106.49	2.49
	N =6			

N: number of samples used for calculations.

17.3.2

(Medium Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision	
ng/mL	ng/mL	Mean (ng/mL)	%	CV %	
<u> </u>	25.840				
	27.778				
26.740	24.641	25.511	95.40	6.78	
26.740	26.740 23.775	23.775	20,311	75.40	0.70
	27.243				
	23.791			<u> </u>	
	N=6				

N: number of samples used for calculations.

17.3.3

(Highest Level) (MW-MW-

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Amount found		Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	99.759	98.873	97.88	8.54
	113.24			
101.00	90.040			
101.02	97.151			
	101.86			
	91.187			
	N =6			

N: number of samples used for calculations.

17.3.4

(Extension Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Amount found		Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%%	CV %
2476.0	2119.1	2184.95	88.25	3.80
	2110.7			
	2214.3			
	2315.9			
	2231.4			
	2118.3			
	N =6			

N: number of samples used for calculations.

Lower Limit of Quantification (LLOQ) (MW-MW-

The lowest standard on the calibration curve (2.6740 ng/mL) fulfilling the requirements for accuracy and precision will be considered the Lower Limit of Quantification.

17.4.1

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
2.3270 2.6339 2.6694 2.6038 2.4944 2.8923	2.3270 2.6339 2.6694 2.6038 2.4944 2.6035	2.6035	97.36	7.23
	N=6		411,	

17.5 Chromatogram of a blank plasma rat (MW= MW=

17.6 Chromatogram of a spiked plasma rat at approximately 8 ng/mL MW=MW=

VALIDATION RESULTS

18.1

Linearity (- MW=

Single calibration samples at six levels ranging from about 1 ng/mL to 50 ng/mL were processed as described in the analytical method. The following correlation was found:

Added ng/mL	Response (Analyte area/ IS area)	Calculated Concentration (ng/mL)	Deviation %
1.0810	3.00E-03	1.1074	2.44
2.1620	4.40E-03	2.1877	1.19
3.2430	5.82E-03	3.2888	1.41
10.810	1.48E-02	10.246	-5.22
36.033	4.67E-02	34.882	-3.20
48.044	6.59E-02	49.662	3.37

Equation:

Response = 0.00156 + 0.00129 * 6

Conc. 0.9993

Response type: area Fit type:

linear

Weighting:

1/X

18.2

For blank plasma samples no interfering peaks were present at the retention times.

18.3

Accuracy and precision

18.3.1

(Low Level) (MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Amount found		Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	3.3630			
	3.3856	3.2949 1	101.60	3.79
3.2430	3.4315			
3.2430	3.2653			
	3.2342]	
	3.0899			
	N =6			

18.3.2

(Medium Level) (- MW= 0)

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
10.810	12.209 12.114 11.411 11.807 11.617 10.875	11.672	107.97	4.21
	N=6			

N: number of samples used for calculations.

18.3.3

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
38.312 41.983 34.966 35.516 36.067 34.825	36.945	90.47	7.51	
	N =6			

N: number of samples used for calculations.

18.3.4

(Extension Level) (Extension Level)

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	1004.1		97.32	6.83
	1039.6	974.04		
1000 0	859.19			
1000.9	1006.2		77.52	
	931.27			
	1003.9			<u> </u>
	N =6			

Lower Limit of Quantification (LLOQ) —— MW=

The lowest standard on the calibration curve (1.0810 ng/mL) fulfilling the requirements for accuracy and precision will be considered as the Lower Limit of Quantification.

18.4.1

LLOQ — MW

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
1.0810	0.9127 1.0280 0.93807 0.94814 1.2206 0.94077	0.99805	92.33	11.61
	N =6			

18.5 Chromatogram of a blank plasma rat WW-WW-

March Marc	
The state of the	
The state The	
Marie Mari	
Application	
The Annual Enter The Annual	
Supplies	
and the control of th	
roj	
CEC C	
1	
No.	
·M	
333	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4 98	
5 (24)	
100	
(m)	
1 [-]	
114 Table 1	
13.5 1	
100 mg	
-1	
μ ₁	
233	
\$ 15E	
\$	
· · · · · · · · · · · · · · · · · · ·	
The ways wealth as no recovered the characterist brother that the	
promorphisms of the street or product and sometiment from the parties.	
A state of the sta	

18.6 Chromatogram of a spiked plasma rat at approximately 3 ng/mL (M) – MW

VALIDATION RESULTS (

19.1

Linearity - MW= WW)

Calibration samples in single at six levels ranging from about 1 ng/mL to 60 ng/mL were processed as described in the analytical method. The following correlation was found:

Added ng/mL	Response (Analyte area/ IS area)	Calculated Concentration (ng/mL)	Deviation %
1.3200	5.44E-03	1.2038	-8.80
2.6399	9.90E-03	2.9416	11.4
3.9599	1.29E-02	4.1094	3.78
13.200	3.36E-02	12.176	-7.75
43.998	1.16E-01	44.303	0.693
58.664	1.54E-01	59.048	0.653

Equation:

Response = 0.00234+0.00257*

Conc.

0.9993 Response type: area

Fit type: Weighting: linear 1/X

19.2

Selectivity — MW=

For blank plasma samples no interfering peaks were present at the retention times.

19.3

Accuracy and precision

19,3.1

(Low Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
3.9599 4.20 4.32 4.33 4.20 4.00	4.2629 4.2755 4.3215 4.2502 4.0866 4.4008	4.2663	107.74	2.43
	N =6			

19.3.2

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	12.336	:		
13.200	13.296	12 589	12.589 95.37	5.59
	11.630			
	11.982	12.507		
	13.093			
	13.195			<u> </u>
	N=6			

N: number of samples used for calculations.

19.3.3

(Highest Level) MW= MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
49.865	44.614 52.486 43.682 45.674 46.587 43.497	46.090	92.43	7.26
	N =6			

N: number of samples used for calculations.

19.3.4

(Extension Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
1222.2	1376.3 1377.4 1080.2 1109.7 1117.9 1163.5	1204.2	98.52	11.33
	N =6			····

Lower Limit of Quantification (LLOQ) — MW-

The lowest standard on the calibration curve (1.3200 ng/mL) fulfilling the requirements for accuracy and precision will be considered as the Lower Limit of Quantification.

19.4.1

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
1.3200	1.2470 1.2584 1.1957 1.3730 1.3715 1.4375	1.3139	99.54	7.11
	N =6			

19.5 Chromatogram of a blank plasma rat (M-MW-MW-

		Trese d'aff
reporting the profession of th	Section for a tool for the first section of the fir	
	10000 1000 4-1-2-44	Ţ,
	Commenter Server	
Charles 1 to 1 t	121 122	
32 350 差異	1	
50 Sec. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	THE RESIDENCE OF THE PARTY OF T	
-F15	Fig. 1803 Sec. V. 22 Co.	
201.4	E. 2014	
5 · · · · · ·		
en el	The Topic willing but they be to the topic will be topic will be to the topic will be to the topic will be to the	ì
- 9	See Section Control Control	
	\$ 12 m m m m m m m m m m m m m m m m m m	
es qui	Strained Life And American	!
*;- ¢	6377	i
9.5		
****		į.
	1641	!
75. 4 - 1	4 50	i
72 43		
9.4	tot	
	,	l l
****	-Que	
****	\$:m.	
- 194 M 2.47 M	3 161	
\$1.4.5 \$1.4.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i
\$ ** ! ? -	, 224	
77.77		
to tak		1
/ * ¹	200	i
en s	240	į.
20 P		ì
* #	1410	i i
***** ** =	red.	
5.7		
	1	l l
	·	
ζυ,	2.0	
111	u,	!
• 24	<u> </u>	l
92.7 B	3**	
1,12		ļ
2.3	u ii	i
i de la companya de l		j
6.54	#18.5g	
4.*		1
	o torre a servani, kilolika kalendari	The state of the s
The first the state of the stat	Section of the sectio	

19.6 Chromatogram of a spiked plasma rat at approximately 4 ng/mL MW= MW=

VALIDATION RESULTS

20.1

Linearity — MW=

Calibration samples in single at six levels ranging from about 1 ng/mL to 40 ng/mL were processed as described in the analytical method. The following correlation was found:

Added ng/mL	Response (Analyte area/ IS area)	Calculated Concentration (ng/mL)	Deviation %
0.87617	6.32E-03	0.78661	-10.2
1.7523	1.02E-02	1.8726	6.86
2.6285	1.33E-02	2.7491	4.59
8.7617	3.43E-02	8.6386	-1.41
29.206	1.09E-01	29.498	1.00
38.941	1.41E-01	38.621	-0.823

Equation:

Response = 0.00352+0.00356*

Conc. 0.9998

Response type: area Fit type:

linear

Weighting:

1/X

20.2

For blank plasma samples no interfering peaks were present at the etention times.

20.3

Accuracy and precision

20.3.1

(Low Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	2.8893			
	2.4930			
2.6285	2.2794	2.6012	98.96	9.38
2.02.03	2.8361			
	2.6955			
	2.4138			
	N =6			

20.3.2

(Medium Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
0	9.7568			
	9.4218			
0.7617	9.7209	9,6972	110.68	2.25
8.7617	10.066	7.07,2		
	9.5491			
	9.6688			<u> </u>
	N =6			

N: number of samples used for calculations.

20.3.3

(Highest Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount	Am	ount found	Accuracy	Precision
added ng/mL	ng/mL	Mean (ng/mL)	%	CV %
ng/mb_	31.142			
	33.540			
20.100	30.338	30,966	93.55	5.06
33.100	30.767	30,700		
	31.298			1
	28.709			<u> </u>
	N=6			

N: number of samples used for calculations.

20.3.4

(Extension Level) — MW=

Sextuplicates at the following concentrations were prepared and analysed:

Amount added	Am	ount found	Accuracy	Precision
ng/mL	ng/mL	Mean (ng/mL)	%	CV %
	740.62			
	709.40			
011.07	733.32	787.34	97.05	9.94
811.27	902.32	10,12		
	865.16			
	773.23			
	N =6	l		

Lower Limit of Quantification (LLOQ) — MW-

The lowest standard on the calibration curve (0.87617 ng/mL) fulfilling the requirements for accuracy and precision will be considered as the Lower Limit of Quantification.

20.4.1

Sextuplicates at the following concentrations were prepared and analysed:

Amount	Am	ount found	Accuracy	Precision
added ng/mL	ng/mL	Mean (ng/mL)	%	CV %
118/11112	0.85838			
	0.87324 0.82732	0.83903	95.76	5.37
0.87617	0.77801	0.03903)3.70	
	0.80079 0.89631			
	N=6			

20.5 Chromatogram of a blank plasma rat

20.6 Chromatogram of a spiked plasma rat at approximately 2.6 ng/mL — MW-

Toxicokinetic analysis - Plasma levels of (market) follows:

(ng/ml) following oral administration of

(2.0 mg/kg) to male

Animal No.			- Control of the Cont	Sampling	Sampling times (hours post-dose)	oost-dose)			
	0	2	4	9	8	24	48	168	216
367100062 367100064 367100066 367100070 367100072 367100074 367100076 367100076	BLOQ BLOQ BLOQ	198.45 D 155.69 D 227.64 D	272.82 D 51.762 D+ 197.66 D	334.38 D 358.60 D 305.38 D	347.29 D 333.65 D 318.77 D	270.06 D 417.51 D 423.02 D	352.73 D 274.21 D 374.31 D	226.83 D 298.65 D 275.77 D	274.02 D 283.70 D 336.99 D
MEAN	0	193.93	235.24	332.79	333.24	370.20	333.75	267.08	298.24
SD	0	36.188	37.58	26.646	14.264	86.765	52.68	36.69	33.909
CA %	0	18.66	15.98	8.01	4.28	23.44	15.78	13.74	11.37

⁺⁼ Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation)

BLOQ = below the limit of quantitation

D = diluted sample

(ng/ml) following oral administration of Toxicokinetic analysis - Plasma levels of

(2.0 mg/kg) to female

Animal No.				Sampling	Sampling times (hours post-dose)	oost-dose)			
	0	2	4	9	æ	24	48	168	216
36710061 36710063 36710065 36710067 36710071 36710073 36710075	BL0Q BL0Q BL0Q	226.84 D 219.66 D 460.15 D	219.27 D 262.80 D 245.32 D	299.87 D 286.84 D 264.54 D	351.20 D 272.03 D 312.69 D	443.95 D 406.66 D 291.57 D	27.695 D +@ 273.33 D 276.44 D	724.52 D@ 290.72 D 402.21 D	327.04 D 222.99 D 211.62 D
Mean	0	302.22	242.46	283.75	311.97	380.73	274.89	472.48	253.88
CS	0	136.82	21.905	17.867	39.59	79.431	N/C	225.28	63.61
%AO	0	45.27	9.03	6.30	12.69	20.86	N/C	47.68	25.06

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation) BLOQ = below the limit of quantitation N/C = Not calculable due to low number of samples

D = diluted sample

(a) = Estimated samples since concentration was out of validation range

(ng/ml) following oral administration of Toxicokinetic analysis - Plasma levels of

(2.0 mg/kg) to male

STUDY NO.:

Animal No.				Sampling	Sampling times (hours post-dose)	ost-dose)			
	0	2	4	9	8	24	48	168	216
367100062	BLOQ		128.45 D			80.697 D			
367100064 367100066	BLOQ BLOQ		23.363 D + 71.903 D			135.25 D 156.93 D			
367100068	,	87.360 D			125.80 D			69.159 D	
367100070		71.018 D G 87 111			124.01 D			99.273 D	
367100074) () ()		113.81 D	J 00:/11		114.51 D	J 94:CO.	85.463 D
367100076				142.92 D			91.774 D		85.350 D
367100078				114.89 D			146.98 D		98.285 D
MEAN	0	986.68	100.18	123.87	122.44	124.29	117.75	91.297	89.699
SD	0	20.408	N/C	16.504	4.368	39.28	27.746	19.42	7.4356
% A.	0	22.68	N/C	13.32	3.57	31.60	23.56	21.27	8.29

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation) BLOQ = below the limit of quantitation

D = diluted sample N/C = Not calculable due to low number of samples

Toxicokinetic analysis - Plasma levels of

(ng/ml) following oral administration of

(2.0 mg/kg) to female

Animal No.				Sampling	Sampling times (hours post-dose)	post-dose)			
	0	2	4	9	8	24	48	168	216
367100061	BLOQ		94.877 D			168.59 D			
367100063	BLOQ		94.685 D			173.82 D			
367100065	BLOQ		113.98 D			139.76 D		***************************************	
367100067		91.680 D			115.97 D			222.77 D	
367100069		111.55 D			122.81 D			102.47 D	
367100071		169.50 D			134.02 D			122.41 D	
367100073				106.50 D			10.901 D +		83.530 D
367100075				119.92 D			114.74 D		71.525 D
367100077				109.39 D			86.232 D		68.156 D
MEAN	0	124.24	101.18	111.94	124.27	160.72	100.49	149.22	74,404
SD	0	40.433	11.085	7.0632	9.1127	18.342	N/C	64.475	8.0812
% AO	0	32.54	10.96	6.31	7.33	11.41	N/C	43.21	10.86

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation) BLOQ = below the limit of quantitation N/C = Not calculable due to low number of samples D = diluted sample \hat{Q} = Estimated samples since concentration was out of validation range

(2.0 mg/kg) to male

Animal No.				Sampling	Sampling times (hours post-dose)	ost-dose)			
	0	2	4	9	8	24	48	168	216
367100062 367100064 367100066 367100068 367100070 367100074 367100076 367100076	BLOQ BLOQ BLOQ	3740.1 D@ 2639.1 D@ 3983.7 D@	3993.2 D@ 610.10 D + 2885.3 D@	4246.0 D@ 4519.3 D@ 3979.1 D@	3908.0 D@ 4008.6 D@ 3726.3 D@	3665.2 D@ 5087.8 D@ 4883.2 D@	4108.3 D@ 3585.9 D@ 4457.8 D@	2350.1 D@ 3414.4 D@ 3779.5 D@	3436.4 D@ 3576.0 D@ 3610.5 D@
MEAN	0	3454.3	3439.25	4248.1	3881.0	4545.4	4050.7	3181.3	3541.0
SD	0	716.41	N/C	270.11	143.08	769.11	438.8	742.65	92.186
CA %	0	20.74	N/C	6.36	3.69	16.92	10.83	23.34	2.60

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation) BLOQ = below the limit of quantitation N/C = Not calculable due to low number of samples

D = diluted sample $\widehat{a} = Estimated samples since concentration was out of validation range$

: 4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

(ng/ml) following oral administration of Toxicokinetic analysis - Plasma levels of

				Samuling	Sampling times (hours post-dose)	ost-dose)			
Animal No.				Sampung				971	216
•	•	7	4	9	8	24	84	108	210
367100061 367100063 367100065 367100067 367100069 367100071 367100073	BLOQ BLOQ BLOQ	3872.9 D@ 3892.7 D@ 5978.3 D@	3355.3 D@ 4056.8 D@ 3431.4 D@	3591.0 D@ 3365.2 D@ 3801.1 D@	4082.3 D@ 3541.0 D@ 3433.9 D@	2634.5 D 2540.1 D 1753.8 D	129.97 D + 697.68 D 804.80 D	1841.4 D + 112.37 D 65.342 D@	180.72 D@ 143.68 D@ 109.57 D@
			1	0 2020	7 2825	2309 5	751.24	88.86	144.66
MEN	0	4581.3	3614.5	0.0000	7.000)		,	1
MEGIN		0 0001	204 02	218	347.59	483.53	Z Z	S N	55.585
S	o (1209.9	10.65	6 08	9.43	20.94	Z/C	N/C	24.60
% ^>	_	26.4	10.65	0.00	27				

⁺ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation) BLOQ = below the limit of quantitation N/C = Not calculable due to low number of samples D = diluted sample @ = Estimated samples since concentration was out of validation range

(ng/ml) following oral administration of

(2.0 mg/kg) to male

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

Toxicokinetic analysis - Plasma levels of

STUDY NO.:

502.11 D 527.52 D 532.05 D 520.56 16.138 3.10 216 421.93 D 588.03 D 537.81 D 515.92 85.186 16.51 168 672.71 D 529.57 D 717.57 D 98.188 639.95 15.34 48 490.64 D 803.64 D 773.47 D 172.66 689.25 25.05 Sampling times (hours post-dose) 77 575.61 D 580.95 D 526.60 D 561.05 29.957 5.34 90 662.64 D 547.87 D 592.06 D 98.009 57.888 9.63 52.358 D+ 365.26 D 610.91 D 488.09 N/C N/C 330.30 D 483.01 D 401.62 D 76.410 404.98 18.87 2 BLOQ BLOQ BLOQ 0 00 SD CV % MEAN 367100074 367100076 367100078 367100068 367100070 367100072 Animal No. 367100066 367100062 367100064

^{+ =} Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation)

BLOQ = below the limit of quantitation

D = diluted sample

N/C = Not calculable due to low number of samples

(2.0 mg/kg) to female

(ng/ml) following oral administration of l Toxicokinetic analysis - Plasma levels of

STUDY NO.:

					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(, , , , , , , , , , , , , , , , , , ,			
Animal No.				Sund man			97	170	216
		7	4	9	8	24	48	100	717
367100061 367100063 367100065 367100067 367100067 367100073 367100075	BLOQ BLOQ BLOQ	479.71 D 491.71 D 831.97 D	428.06 D 504.46 D 487.53 D	496.46 D 527.13 D 458.37 D	572.51 D 478.95 D 528.48 D	785.91 D 757.38 D 582.84 D	26.422 D + @ 497.41 D 442.23 D	1199.9 D 462.11 D 659.40 D	509.47 D 385.93 D 341.14 D
			1000	00 00	57 705	708 71	469.82	773.8	412.18
MEAN	0	601.13	475.35	475.77	0.040				101 70
NO THE		00 000	40 125	34.447	46.807	109.94	Z/C	381.97	8/.101
OS	> 0	23.77	× 4×	6.97	8.89	15.51	N/C	49.36	21.15

+ = Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation) BLOQ = below the limit of quantitation N/C = Not calculable due to low number of samples

D = diluted sample

 $\widehat{\boldsymbol{a}}$ = Estimated samples since concentration was out of validation range

(2.0 mg/kg) to male

Toxicokinetic analysis - Plasma levels of

82.499 D 84.915 D 113.91 D 93.775 17.48 18.64 216 86.516 D 114.77 D 133.95 D 111.75 23.861 21.35 168 221.07 D 132.5 D 76.32 D 44.286 25.07 176.63 48 123.49 D 202.99 D 238.7 D 58.976 31.31 188.39 Sampling times (hours post-dose) 42 174.67 D 181.71 D 190.45 D 182.28 7.9052 4.34 90 224.66 D 173.11 D 192.85 D 26.009 196.87 225.72 D 19.703 D+ 132.50 D 179.11 Z Z Z Z 91.728 D 176.81 D 109.93 D 44.802 35.51 126.16 N BLOQ BLOQ BLOQ 0 00 0 MEAN SD CV % 367100078 STUDY NO. Animal No. 367100072 367100074 367100076 367100066 367100068 367100070 367100062 367100064

⁺⁼ Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation) BLOQ = below the limit of quantitation

D = diluted sample

N/C = Not calculable due to low number of samples

14-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

(ng/ml) following oral administration of Toxicokinetic analysis - Plasma levels of

				Samuling	Sampling times (hours post-dose)	ost-dose)			
Animal No.				Samdamo			70	168	216
	_	2	4	9	8	24	40	100	
367100061 367100063 367100065 367100067 367100073 367100073 367100073	BLOQ BLOQ BLOQ	149.91 D 153.27 D 269.28 D	171.30 D 169.55 D 209.91 D	168.77 D 188.72 D 148.40 D	194.63 D 182.27 D 198.66 D	250.66 D 266.05 D 187.36 D	13.844 D + 129.08 D 108.22 D	266.49 D + 101.56 D 118.98 D	1 8 9
					20,00	23460	118.65	110.27	75.169
MEN	0	190.82	183.59	168.63	191.65	70.4.77			372.01
SD	0	696'19	22.813	20.16	8.5405	41.705	O C Z Z	S S S S	16.98
% AS	0	35.62	12.43	11.90	4.40				

⁺⁼ Values giving a CV > 50% were not included in the calculation of mean, standard deviation and CV (coefficient of variation)
BLOQ = below the limit of quantitation
D = diluted sample
N/C = Not calculable due to low number of samples

Toxicokinetic analysis - Toxicokinetic parameters

#-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

NO.
Ä
ST

Males	elektris ele				
			, [,	×117	*AIIC
Dose level	tmax	Cmax	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	AUC(24-216)	(no/ml·h)
(mø/kg)	(h)	(lm/gu)	(u)	(mS/mm.m)	((Sm)
0	24	370.2	544	65550	299662
_1					
	+		% ±*	*AUC/24-216)	*AUC(inf)
	rmax (P)	(ng/ml)	, (d)	(ng/ml·h)	(ng/ml·h)
	(II) 24	124.3	385	22516	72388
		C.+.71			
					CFF *
0,0	tmax	C	*T 1/2	*AUC(24-216)	*AUC(inf)
\	(g)	(lm/gu)	(h)	(ng/ml·h)	(ng/ml·n)
	24	1545.4	481	791984	3249932
		1.01.01		The state of the s	
	+		71 1.*	*AUC,2151	*AUC(in)
	rmax	Cmax (mc/m)	. E	(ng/ml·h)	(ng/ml·h)
	(u)	(118/1111)	(,,)		,
	24	689.3	454	123729	464508
			7 6 500 7	() L V *	* 7110
	tmax	C _{max}	* / /2	AUC(6216)	(mg/ml·h)
	(h)	(lm/gu)	(h)	(u.im/gu)	(118/1111)
	9	1969	201	30768	57915
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

* Calculated from t_{max}

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

Toxicokinetic analysis - Toxicokinetic parameters

Females					
	tmov		°T 1/2	°AUC(24-216)	°AUC _(inf)
Dose level	(h)	(ng/ml)	(h)	(ng/ml·h)	(ng/ml·h)
(IIIB/RB)	168	2 CLV	2185	77653	877949
		6.774			
1				C + *	* 7110, ,
	tmax	Стах	*I.%	*AUC(24-216)	(m) (m) (m)
	(h)	(lm/gu)	(h)	(ng/ml·h)	(ng/mrn)
	24	1607	346	26563	63751
		100.	The state of the s		
	*		/I L*	* 4110,0210	*AUC(int)
2.0	^L max	C _{max}	(h)	(ng/ml·h)	(ng/ml·h)
	(u)	(IIB/IIII)			0,000
	2	4581.3	39	167950	1/6042
	+		% Lo	°AUC/24.216)	°AUC _(inf)
	-max	(max	(F)	(ng/ml·h)	(h·lm/gu)
	168	(mr/Sm)	(7)	130770	584697
		773.8	607	07.001	
	tmax	C	*T 1/2	$*AUC_{(24-216)}$	$*AUC_{(inf)}$
) (E	(lm/gu)	(h)	(ng/ml·h)	(n/lm/gn)
	24	2347	160	27116	44431

^{*} Calculated from t_{max} ° Calculated from 24 hours

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

ADDENDUM V - Certificate of analysis

: 4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

ADDENDUM VI - Study protocol

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2 WEEK RECOVERY PERIOD

Final Protocol prepared for

by

- 1 of 16 -

March 2005

Volume II

Page 216

1. INTRODUCTION

1.1 Objective

The purpose of this study is to evaluate the toxicity of and administration for 4 weeks and recovery from any treatment related effects during a recovery period of 2 weeks.

1.2 Species

The Sprague Dawley rat is the species and strain of choice because it is accepted by many regulatory authorities and there is ample experience and background data on this species and strain.

1.3 Route of administration

The test item will be administered by oral route. The oral route has been selected as it is a possible route of exposure of the test item in man.

1.4 Regulatory compliance

This study will be conducted in compliance with the GLP regulations of:

- Commission Directive 1999/11/EC of 8 March 1999 (adoption of the "OECD principles on Good Laboratory Practice as revised in 1997") and subsequent revisions.
- Decreto Legislativo no. 120 of 27 January 1992 and subsequent revisions.

This study design is in agreement with the procedures described in OECD Guideline no. 407 adopted 27 July 1995 and with those described by Japanese METI (Ministry of Economy, Trade and Industry) of 13 July 1974 and subsequent revisions.

The Sponsor has required the testing activity on this substance to develop notification/submission to regulatory authorities and produce a safety assessment for production and uses.

Procedures and facilities will comply with the requirements of Commission Directive 86/609/EEC concerning the protection of animals used for experimental and other scientific purposes. National legislation, harmonising with this Directive, is defined in Decreto Legislativo No. 116 of 27 January 1992. Aspects of the protocol concerning animal welfare have been approved by the Company's Ethical Committee.

March 2005

2. TEST ITEM

2.1 Characterisation

It will be the responsibility of the Sponsor to determine, for each batch of test item, the identity, strength, purity and composition, or other characteristics which appropriately define the test item, before its use in the study. The determination of the stability of the test item will also be the Sponsor's responsibility.

A certificate of analysis for the test item should also be supplied.

2.2 Identity

The test item will be

The following information refers to the original batch of test item received for the study:

Batch Number

90409-86-I

Date of expiry Appearance 01 January 2015

Storage conditions:

Ambient

Should further batches be required to complete the study, full details of batch usage will be maintained in the formulation records but protocol amendments will not be issued.

The amount of the test item received and used at will be recorded according to standard procedures.

2.3 Safety precautions

The precautions necessary when handling either the test item or prepared formulations of the test item are based on information supplied by the Sponsor. The minimum safety precautions necessary are detailed under the lazard Classification System, according to standard procedures.

2.4 Vehicle

The vehicle will be

2.5 Formulation procedure

The required amount of will be dissolved in the vehicle. The formulations will be prepared daily (concentrations of 0.03, 0.08 and 0.20 mg/ml). Concentrations will be calculated and expressed in terms of test item as supplied.

2.6 Formulation analysis

Analysis will be performed to confirm that the proposed formulation procedure is acceptable and the stability of formulation is satisfactory.

Samples of the formulations prepared in weeks 1 and 4 of the study will also be analysed to check the concentration. Chemical analysis will be carried out by the Analytical Chemistry Department at additional cost).

March 2005

2.7 Disposal

Approximately 1 year after the final report has been issued, remaining amounts of the test item, with the exception of the reserve samples taken for archival purposes, will be returned to the Sponsor.

3. TEST SYSTEM

3.1 Animal supply and acclimatisation

A total of 90 Hsd Sprague Dawley rats (45 males and 45 females), 27-29 days old and within a weight range of approximately 75-99 g, will be obtained from

After arrival the weight range for each sex will be determined and the animals will be temporarily identified within the cage by means of a coloured mark on the tail. A health check will then be performed by a veterinarian.

An acclimatisation period of approximately 2 weeks will be allowed before the start of treatment, during which time the health status of the rats will be assessed by thorough observations. Rats considered unsatisfactory will be killed and where appropriate subjected to pathological examination. Unsatisfactory batches of animals will be rejected before the start of treatment.

3.2 Animal husbandry

The animals will be housed in a limited access rodent facility. Animal room controls will be set to maintain temperature and relative humidity at $22^{\circ}\text{C} \pm 2^{\circ}\text{C}$ and $55\% \pm 15\%$ respectively; actual conditions will be monitored, recorded and the records retained. There will be approximately 15 to 20 air changes per hour and the rooms will be lit by artificial light for 12 hours each day.

The animals will be housed up to 5 of one sex to a cage, in clear polycarbonate cages measuring 59x38.5x20 cm with a stainless steel mesh lid and floor (Cartal Cartal Car

which will be inspected and changed at least 3 times a week. Drinking water will be supplied ad libitum to each cage via water bottles, except as noted in section 4.3.

A commercially available laboratory rodent diet will be offered ad libitum throughout the study, except as noted in section 4.3.

There is no information available to indicate that any non-nutrient substance likely to influence the effect of the test item is present in the drinking water or the diet. Records of analyses of water and diet are kept on file at

Dated and signed records of activities relating to the day to day running and maintenance of the study in the animal house will be recorded in a Study Day Book.

3.3 Allocation to groups

On the day of allocation (about 7 days prior to the start of treatment) all animals will be weighed. Animals at the extremes of the weight distribution and/or any animal showing signs of ill health will be excluded to leave the required number of animals. The rats will be allocated to the 5 groups by computerised stratified randomisation to give approximately equal initial group mean body weights.

Individuals will be uniquely identified within the study by sex, tattoo on the hind feet, and ear notch and housed up to 5 of one sex per cage.

The cages will be identified by a label and recording the study number, animal numbers and details of treatment

details of treatment.

The arrangement of cages in batteries will be such that cages from each main group will be evenly distributed across the battery (Annex 2) to minimise possible environmental effects. Any animal showing signs of ill health during the period between allocation and the start of treatment will be subjected to pathological examination as considered appropriate, and replaced with a surplus animal selected from the same batch.

4. EXPERIMENTAL PROCEDURE

4.1 Treatment

4.1.1 Selection of dose levels

Dose levels have been selected in consultation with the Sponsor based on information from preliminary studies.

4.1.2 Dose levels, group size and identification

Each main group will comprise 5 male and 5 female rats. Control and high dose groups will include 5 additional animals per sex to be sacrificed after 2 weeks of recovery. One satellite group for toxicokinetics will comprise 9 male and 9 female animals. The group identification and animal numbers assigned to the treatment are summarised below:

MAIN GROUPS

						ımbers
		Level	Mair	n phase	Recove	ry phase
Group	Treatment		M	F	M	F
Number:	(mg/kg/day)+		(even)	(odd)	(even)	(odd)
	0.0	Control	2 - 10	1-9	12 - 20	11 - 19
1	0.0	Low	22 - 30	21 - 29		
2	0.8	Medium	32 - 40	31 - 39		er co
3 4	2.0	High	42 - 50	41 - 49	52 - 60	51 - 59

SATELLITE GROUP

	1	Kat iii	umbers
Group Treatment Number: (mg/kg)+	Level	Males (even)	Females (odd)
5 2.0	High	62 - 78	61 - 77

The rat numbers listed above will form the last digits of a computer generated 8 figure animal number (the remaining digits of the animal number will be different for each concurrent study and will serve to ensure unique animal numbering for any study employing computerised data collection). The computerised system used in this study will be the Xybion Path/Tox System, version 4.2.2.

Administration of test item 4.1.3

The test item will be administered orally, by gavage, at a dose volume of 10 ml/kg body weight. Control animals will receive the vehicle alone at the same dose volume. The dose will be administered to each animal on the basis of the most recently recorded body weight and the volume administered will be recorded for each animal.

Duration of treatment 4.1.4

All main group animals will be dosed once a day, 7 days a week, for a minimum of 4 consecutive weeks followed by a recovery period of 2 weeks for 5 males and 5 females from groups 1 and 4. Satellite group animals will be dosed once only.

All animals from the main groups will be dosed up until the day before necropsy. No treatment will be given during the recovery period.

In vivo observations 4.2

Full records will be maintained for all measurements and observations.

4.2.1 Mortality

Throughout the study, all animals will be checked early in each working day early in the morning and in the afternoon. At weekends and Public Holidays a similar procedure will be followed except that the final check will be carried out at approximately mid-day. This will allow post mortem examinations to be carried out during the working period of that day. Severely debilitated animals will be observed carefully. Animals judged to be in-extremis will be killed. A complete necropsy will be performed in all cases as detailed in section 5.4.2 below.

Pre- and post-dose observations (Main groups) 4.2.2

All observations will be recorded for individual animals.

Examination of individual animals for signs of reaction to treatment will be carried out daily prior to dosing and at suitable intervals after dosing. The number and timing of these daily observations will be reviewed by the Study Director at the end of the first week of treatment and, if appropriate, at subsequent intervals.

The number of observations may be reduced, but all animals will be observed at least three times daily during treatment. If more than three daily observations are required after the first week of treatment, an additional cost may be incurred.

4.2.3 Clinical signs and neurotoxicity assessment (Main groups)

Once before commencement of treatment and at least once per week from the start of treatment, each animal will be given a detailed clinical examination. Each animal will be observed in an open arena. The test will include observation of changes in gait and posture, reactivity to handling, presence of clonic or tonic movements, stereotypies or bizarre behaviour and effects on the autonomic nervous system (e.g. lachrymation, piloerection, unusual respiratory pattern).

Once during week 4 of treatment and once during week 2 of recovery an evaluation of sensory reactivity to stimuli of different modalities (e.g. auditory, visual and proprioceptive stimuli) and an assessment of grip strength will also be performed.

4.2.4 Motor activity assessment (MA) (Main groups)

The motor activity (MA) of all animals will be measured once during week 4 of treatment and once during week 2 of recovery by an automated activity recording. Measurements will be performed using a computer generated random order.

4.2.5 Body weight

Each animal will be weighed on the day of allocation to treatment groups, on the day that treatment commences, weekly thereafter and just prior to necropsy. Satellite group animals will be weighed only on the day of dosing.

4.2.6 Food consumption (Main groups)

The weight of food consumed by each cage of rats will be recorded at weekly intervals following allocation. The group mean daily intake per rat will be calculated.

4.3 Clinical pathology investigations (Main groups)

At the end of the 4-week treatment period, individual overnight urine samples will be collected from all surviving animals of the main phase groups under conditions of food and water deprivation. Before starting urine collection, water bottles will be removed from each cage and each animal will receive approximately 10 ml/kg of drinking water by gavage, in order to obtain urine samples suitable for analysis.

On the same day, samples of blood will be withdrawn, prior to necropsy, under isofluorane anaesthesia from the abdominal vena cava from the same animals in the same conditions. During week 2 of the recovery period, blood and urine samples may also be taken (after consultation with the Sponsor) from all surviving animals under identical conditions in order to re-evaluate any parameters which showed treatment-related changes at measurements performed during the treatment period (additional cost).

Blood samples will be collected and analysed in the same order, a computer-generated random cage order being used.

The blood samples collected will be divided into tubes as follows:

EDTA anticoagulant Heparin anticoagulant Citrate anticoagulant

for haematological investigations

for biochemical tests for coagulation tests

The measurements to be performed on blood and urine samples are listed below:

Haematology 4.3,1

Haematocrit

Haemoglobin

Red blood cell count

Reticulocyte count (if there are signs of anaemia)

Mean red blood cell volume

Mean corpuscular haemoglobin Mean corpuscular haemoglobin concentration

White blood cell count

Differential leucocyte count - Neutrophils

- Lymphocytes

- Eosinophils

- Basophils

- Monocytes

- Large unstained cells

Abnormalities of the blood film

Platelets

Prothrombin time

Clinical chemistry 4.3.2

Alkaline phosphatase

Alanine aminotransferase

Aspartate aminotransferase

Gamma -glutamyltransferase

Urea

Creatinine

Glucose

Triglycerides

Phosphorus

Total bilirubin

Total cholesterol

Total protein

Albumin

Globulin

A/G Ratio

Sodium

Potassium

Calcium

Chloride

4.3.3 Urinalysis

Appearance

Volume

Specific gravity

PH

Protein

Total reducing substances

Glucose

Ketones

Bilirubin

Urobilinogen

Blood

The sediment, obtained from centrifugation at approximately 3000 rpm for 10 minutes, will be examined microscopically for:

Epithelial cells
Poly morphonuclear leucocytes
Erythrocytes
Crystals
Spermatozoa and precursors
Other abnormal components

4.4 Toxicokinetics (Satellite group)

will be performed in these animals.

Blood samples will be collected at 9 points from the day of dosing, from all animals of the satellite group as indicated in following scheme:

Satetite Broad an				
Group Number:	Treatment (mg/kg)	112102007	(Females) 61,63,65	Time points (hours) 0, 4, 24
5	2.0	68, 70, 72	67, 69, 71	- 440

At each sampling time approximately 0.8 ml blood samples will be collected from the tail vein of each animal as indicated above. Samples will be transferred into tubes containing heparin anticoagulant, centrifuged and the plasma frozen at -20°C. Analysis of the samples will be carried out by the Analytical Chemistry Department of Satellite group animals will be dosed once only and no necropsy will be performed on animals dying during the study or sacrificed at the end of the study. Surviving satellite group animals will be killed at the end of the last bleeding procedure. No necropsy examination

Terminal studies 4.5

Euthanasia 4.5.1

Animals in extremis or killed for humane reasons and those that have completed the scheduled test period will be killed with carbon dioxide. All animals of the main groups, including those found dead, will be subjected to necropsy, supervised by a pathologist, as detailed below.

Necropsy (Main groups) 4.5.2

The clinical history of the animal will be studied and a detailed post mortem examination will be conducted (including examination of the external surface and orifices). Changes will be noted, the requisite organs weighed and the required tissue samples preserved in fixative and processed for histopathological examination (see sections 4.5.3 to 4.5.5).

Organ weights (Main groups) 4.5.3

From all animals completing the scheduled test period, the organs indicated in Annex 1 will be dissected free of fat and weighed.

The ratios of organ weight to body weight will be calculated for each animal.

At the discretion of the pathologist, organs may be weighed from animals dying or killed prior to terminal kill.

Tissues fixed and preserved (Main groups) 4.5.4

Samples of all the tissues listed in Annex 1 will be fixed and preserved in 10% buffered formol saline (except eyes which will be fixed in Davidson's fluid; and testes and epididymides which will be fixed in Bouin's solution and all preserved in 70% ethyl alcohol).

Histopathological examination 4.5.5

The tissues required for histopathological examination are listed in Annex 1. After dehydration and embedding in paraffin wax, sections of the tissues will be cut at 5 micrometre thickness and stained with haematoxylin and eosin.

If considered necessary, histological processing may be subcontracted to a GLP certified test site. In such cases, a protocol amendment will be issued, the Sponsor will be informed of the location of the test site and the complete address and name of the Principal Investigator will be presented in the final report.

In the first instance the examination will be restricted as detailed below:

- a) Tissues specified in Annex 1 from all animals in the control and high dose group killed after 4 weeks of treatment.
- b) Tissues specified in Annex 1 from all animals killed or dying during the treatment period.
- c) All abnormalities in all main groups.

The examination could then be extended to include, from all other animals killed after 4 weeks of treatment or 2 weeks of recovery those tissues in which there is any suspicion of treatment-related change at the high dose level.

All histopathological activities which cannot be foreseen before the start of the study (i.e. processing of all abnormalities, tissues of unscheduled deaths in the low, medium dose and recovery groups, target tissues in the low and medium dose) will incur an additional cost.

Photomicrographs 4.5.6

Representative photomicrographs may be taken of any treatment-related lesions. Other photomicrographs may be taken as required by the Sponsor.

ANALYSIS OF DATA 5.

Presentation of data 5.1

The data will be summarised and presented in the form of tables or figures. Individual observations and findings for each animal will also be tabulated.

Statistics 5.2

For continuous variables the significance of the differences amongst group means will be assessed by Dunnett's test or a modified t test, depending on the homogeneity of data.

AMENDMENTS TO THE PROTOCOL 6.

It is not intended to make any amendment to this protocol without authorisation by the Sponsor. However, in the event of difficulty in contacting the Sponsor and/or for humane reasons and/or for the protection of scientific integrity, the testing laboratory retain the right to take independent action.

REPORTING 7.

Interim report 7.1

Any unexpected findings during the course of the study will be reported to the Sponsor's Monitoring Scientist immediately.

Final report 7.2

A draft report will be sent to the Sponsor. With the exception of the dated signature of scientists and other professional personnel, the draft report will contain all information and data included in the final report.

Comments made by the Sponsor may be incorporated into the draft, after which it will be

The final report will include the information and data required by current internationally recognised regulations. One original unbound, one copy bound and a PDF version will be supplied.

Corrections or additions to the final report 7.3

Corrections or additions to the approved (i.e. signed) version of the final report will be in the form of an amendment by the Study Director.

RECORDS AND ARCHIVES 8.

Full records will be maintained of all aspects of study conduct, together with results of all measurements and observations.

will retain all relevant computer stored data generated by electronic on-line capture in a manner fully compliant with Good Laboratory Practice. At the end of the specified period, these data may be despatched to the Sponsor in the original format. If requested, reformatting of these data on alternative media may be carried out and will incur an

Prior to commencement of treatment and at each batch change a reserve sample of the test item will be taken and kept under the storage conditions of the bulk supply at

The reserve sample(s) of the test item will be retained within the archives for a period of 10 years and then destroyed.

If relevant, biological samples obtained for analytical chemistry measurements or similar will be destroyed shortly after the issue of the Final Report, unless otherwise requested by the Sponsor.

All specimens other than the samples described above, raw data, records and documentation provided for a period of 3 years after which the Sponsor will be contacted for instructions regarding despatch or disposal of the material. As a further option, archiving space can be rented for an additional time.

The signed Final Protocol and the top copy of the Final Report will be despatched to an archive by the Sponsor.

QUALITY ASSURANCE 9.

The phases of the study carried out at will be subjected to the following quality assurance procedures:

- the protocol will be inspected.
- all procedures relevant to the study will be inspected at intervals adequate to assure the integrity of the study.
- the report will be reviewed to assure that it accurately describes the methods and Standard Operating Procedures and that the results accurately reflect the raw data.

Periodic reports on these activities will be made to management and the Study Director. All raw data pertaining to the study will be available for inspection by the Sponsor's representative and regulatory authorities (following authorisation from the Sponsor).

10. LOCATION OF THE STUDY

11. PROJECTED TIME PLAN

1. Start of treatment

2. End of in vivo phase

3. End of histopathological examination

4. QAU audited draft report to Sponsor

Date

: End of March 2005

Mid May 2005

First half of June 2005

: 3.5 months after the first day of treatment

TISSUE PROCESSING ANNEX 1.

/T'anyon	Weight	Fixation Preservation	Microscopic Examination
Organs / Tissues		Preservation	V
Abnormalities	,	*	✓
Adrenal glands	✓	· /	✓
Bone marrow (from sternum)	,	· /	✓
Brain	✓	· /	✓
Caecum		· /	✓
Colon		. 🗸	✓
Duodenum	,	· /	✓
Epididymides	✓	√	*
Eyes	,	· /	✓
Heart	✓	· /	✓
Ileum (including Peyer's patches)		✓	✓
Jejunum		· /	✓
Kidneys	√	✓	✓
Time	•	✓	✓
Livel Lungs (including mainstem bronchi)		✓	✓
Lymph nodes - cervical		✓	✓
Lymph nodes - mesenteric	✓	✓	✓.
Ovaries	•	✓	✓.
Oviducts*		✓	✓.
Parathyroid glands ^b		✓	✓.
Pituitary gland		✓	✓.
Prostate gland		✓	✓.
Rectum		✓	✓.
Sciatic nerve		✓	✓
Seminal vesicles		✓	*
Spinal column		✓	√
Spinal cord	✓	✓	✓
Spleen		✓	· ·
Stomach	✓	✓	v
Testes	✓	✓	v
Thymus (where present)	✓	✓	*
Thyroid		✓.	↓
Trachea		✓.	· ·
Urinary bladder		✓	
Uterus - cervix	f toxicity or targe	et organ involvemen	t.

^{*:} to be examined if indicated by signs of toxicity or target organ involvement.

a: weighed and preserved with ovariesb: weighed and preserved with thyroid gland

GROUP AND CAGE ARRANGEMENT ON BATTERY ANNEX 2.

		MAIN P	HASE Rat nu	mhers	Cage nu	ımbers
Group Number:	Treatment (mg/kg/day)+	Level	M (even)	F (odd)	M	F
1 2 3	0.0 0.3 0.8	Control Low Medium High	2 - 10 22 - 30 32 - 40 42 - 50	1 - 9 21 - 29 31 - 39 41 - 49	1 3 4 5	9 10 11
4 → in terms of	test item as suppli					

RECOVERY PHASE

	F	RECOVER	Y PHASE	<u></u>		mboso
	Treatment	Level	Rat nu	mbers	Cage nu	inuers
Group	(mg/kg/day)+		M	F	M	P
Number:	(mg/kg/day)+	1	(even)	(odd)		
		- Co-trol	12 - 20	11 - 19	2	8
1	0.0	Control	52 - 60	51 - 59	6	12
4	2.0	High	32-00	1_31_5/		
+: in terms of	test item as supplie	ed ring the rec	overy perio	xd		

°: No treatment will be given during the recovery period.

SATELLITE GROUP

		CATEI	LITE GRO	OUP		
			Rat nu	mbers	Cage nu	ımbers
Group	Treatment	Level		F	М	F
Number:	(mg/kg/day)+		M	(odd)]
1,5			(even)		13-15	17-19
	2.0	High	62 - 78	61 - 77	13-13	1
	1	d				
+: in terms of t	est item as supplie					

Group/Se	×x
Clonbiac	,, ,
	Cage no.

= To be inserted in the final report

PROTOCOL APPROVAL PAGE

STUDY TITLE

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2

WEEK RECOVERY PERIOD

TEST FACILITY

RTC ENQUIRY NO.

TEST ITEM

APPROVED BY

15- Mar- 2005 Date

APPROVED BY

15- Her- 2005 Date

RELEASED BY

15 Mar 2005 Date

SPONSOR

AUTHORISED BY SPONSOR*

18/03/2005 Date

Name and Title

Please print or type your name and company status below your signature.

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2

WEEK RECOVERY PERIOD

ADDENDUM VII - Clinical pathology report

STUDY NO.:

Haematology

A decrease in white blood cell was observed in the high dose animals (approximately 19%) and in the mid-dose females (approximately 17%) at the end of the treatment period. This reduction was still evident at the end of the recovery period (11% and 16% in females and males respectively). The decrement comprised both the lymphocytes and the neutrophils in the males, which had 29%, 19% and 39% less neutrophils at the high, medium and low dose, respectively. Such an evident decrement was not observed in the females.

In addition, the prothrombin time was slightly increased in high dose males (14%). This could reflect the alteration in hepatic functions as indicated by the clinical chemistry results. This change showed a trend for recovery at the end of treatment-free period, when an increase of 8% was observed.

The other differences observed in the haematological parameters (RBC, HGB, HCT, MCHC) were considered to be incidental and of no toxicological significance, since they were observed only during the recovery phase and no other alterations in the same haematological parameters were observed during the treatment period.

Clinical Chemistry

The statistically significant changes in clinical chemistry parameters are summarized below:

he statistica				1 () (D	2F	3F	4F	4F Rec
Parameters	2M	3M	4M	4M Rec	125			Ī
	2111	+18%	+33%	+41%	ļ			i .
AP		+309%	+219%	<u> </u>	_			-29%
ALT		+58%	+61%		_	-60%	-33%	-37%
AST	 	100,0	+70%		<u> </u>	-0070	1-33,0	1
BILT	-34%	-23%	1	+76%	ļ		+20%	+31%
CHOL	-3470	+			<u> </u>		120.0	-27%
GLU	 	-51%		-45%			+24%	1
TRI	- 		+48%	+35%			-15%	-35%
Urea				-34%			-1-15/0	
Crea	-9%		-16%	-11%				+9%
Prot	-970		-13%					
Alb	-14%	-11%	-23%	-26%			+17%	+20%
Gio	-14/0						+2%	-1%
A/G Ratio			+2%				-9%	-7%
CI		-9%	-21%		_		- 1 - 2 / 0	-2%
Phos		+4%		-2%				+12%
Na K								

Changes observed at the clinical chemistry investigations performed during week 4 of treatment revealed alteration of liver function in the high dose males and, to a lesser extent, in two mid-dose males (increases in hepatic markers alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and total bilirubin, decrements of protein, globulin and albumin). Those changes were generally dose related (from approximately 20% to approximately 3 fold) and in some high dose animals values were outside the range of historical data.

The above mentioned changes could reflect an alteration in the hepatic function. A reversibility of these changes was observed for the aminotransferase enzymes at the clinical pathology performed during week 2 of recovery. No significant hepatic marker alterations were observed in females.

Urea plasma levels were increased in high dose animals, while creatinine and inorganic phosphorus showed a decrement in the same group. At the end of the recovery period, no complete reversibility of such changes was observed. The cause of these changes however remains unclear and could not be

In addition, changes of chloride and sodium serum levels were insufficient in magnitude to be of biological significance.

The other alterations observed during the recovery period in both sexes were considered to be incidental and of no toxicological significance.

Urinalysis

No alterations in urine were observed which could be attributed to treatment.

Study Clinical Pathologist

date: 19 December 2005

4-WEEK ORAL TOXICITY STUDY IN RATS FOLLOWED BY A 2

WEEK RECOVERY PERIOD

ADDENDUM VIII - Historical control data

STUDY NO.:

Volume II Page 236 17.5 24.3 Ŋ 18.6 Fig. 2: 4 week Studies - Food consumption - Both sexes Week number 18.1 25.4 17.4 24.1 N 22.7 7 - ← Females 5 18 16 17 8 Food consumption (glanimal/day)

Fig. 3: 4 week Studies - Haematology - Males

			Maximum	Mi	nimum	Mean	Std Dev
Parameter	Units	No.	11 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (+	13.4	16.1	0.7
Haemoglobin	g/dl	152	17.9	+	7.1	8.4	0.4
Red Blood Cell Count	10^12/1	152	·	 	39.0	47.8	2.4
Haematocrit	%	152		-		19.0	1
Mean Corpuscular Hb	pg	152		-+	17.8		ļ
Mean Corpusc. Hb conc.	g/dl	152	36.	5	31.4	33.6	1
Mean Red Blood Cell	 	152	61.	.1	51.1	56.7	1.6
Vol.		-	2 21	5	8.1	12.9	2.
White Blood Cell Count		15		.0	5.2	11.	3 5.
Neutrophils	%	15			37.4		1 5
Lymphocytes	%	15		.9	1.		5 0
Monocytes	%	15		5.7		<u>^</u>	.3 0
Eosinophils	%	1:	52	5.8	0.		.3
Basophils	%	1	52	0.6	0.	<u> </u>	
	%	1	52	2.8			
Large Unstained Cells	10^9		51 141	3.0	370		
Platelets Prothrombin Time	sec		75	8.2	10	1.4	3.0

Fig. 4: 4 week Studies - Haematology - Females

		<u>.</u>	Maximum	Minimum	Mean	Std Dev
Parameter	Units			11.5	15.3	0.7
Haemoglobin	g/dl	161	16.8		8.0	0.4
Red Blood Cell Count	10^12/1	161	8.9	6.4		2.4
Haematocrit	%	161	49.6	33.9	44.4	
Mean Corpuscular Hb	pg	161	20.9	17.6	19.1	0.6
	g/dl	161	37.7	31.2	34.5	
Mean Corpusc. Hb conc. Mean Red Blood Cell		161		51.5	55.4	1.8
Vol.	10*9/1	161	15.4	3.7	8.8	2.3
White Blood Cell Count	 	161	ļ	+	10.9	4.
Neutrophils	%		`		83.	7 4.
Lymphocytes	%	16	`	<u> </u>		3 0.
Monocytes	%	16		`		
Eosinophils	%	16				<u></u>
Basophils	%	16	1 0.			<u>-</u>
Large Unstained Cells	%	16	1 2.	.2 0.	_	
	10^9/	$\frac{1}{1}$	1427	.0 458.	0 1065	.7 141
Platelets Prothrombin Time	sec.		17 15	.4 11.	2 13	.1 1

Fig. 5: 4 week Studies - Serum Chemistry - Males

Parameter	Units	No.	Maximum	Minimum	Mean	Std Dev
Albumin/Globulin ratio	en en i	37	1.1	0.5	1.0	0.1
Albumin	g/dl	82	4.4	2.4	3.5	0.4
Alanine Amino-Transferase	U/I	162	78.0	19.1	44.8	11.4
Alkaline Phosphatase	U/I	162	769.7	162.3	340.6	113.5
Aspartate Amino-Transferase	U/l	162	215.3	38.4	92.6	31.3
Total Bilirubin	mg/dl	162	0.3	0.0	0.1	0.0
Calcium	mmol/l	162	3.0	2.3	2.6	0.1
Total Cholesterol	mg/dl	162	561.6	67.3	105.2	40.1
Chloride	mmol/l	162	106.6	87.7	96.3	3.9
Creatinine	mg/dl	162	0.8	0.3	0.5	0.1
Gamma-Glutamyl Transferase	U/I	22	3.2	0.0	1.2	0.9
Globulin	g/dl	37	4.7	2.9	3.5	0.3
Glucose	mg/di	162	166.3	59.8	113.2	21.3
Potassium	mmol/l	162	5.8	2.8	3.9	0.5
Sodium	mmol/l	161	170.4	132.1	146.6	9.0
Inorganic Phosphorus	mg%P	22	2 8.8	6.5	7.8	0.7
Total Protein	g/dl	162	7.5	5.8	6.8	0.4
Triglycerides	mg/dl	15	56.6	5 25.7	42.2	10.4
Urea	mg/dl	162	2 88.	18.5	41.1	10.3

Fig. 6: 4 week Studies - Serum Chemistry - Females

Parameter	Units	No.	Maximum	Minimum	Mean	Std Dev
Albumin/Globulin ratio		37	1.2	1.0	1.1	0.1
Albumin	g/dl	82	4.7	3.2	3.8	0.4
Alanine Amino-Transferase	U/I	162	52.5	13.5	34.1	8.7
Alkaline Phosphatase	U/l	162	769.8	90.5	248.4	99.5
Aspartate Amino-Transferase	U/I	162	144.7	29.5	78.2	20.2
Total Bilirubin	mg/dl	162	0.2	0.0	0.1	0.0
Calcium	mmol/l	162	2.8	2.3	2.6	0.1
Total Cholesterol	mg/dl	162	363.6	49.2	98.5	29.4
Chloride	mmol/l	162	105.5	81.5	97.5	4.5
Creatinine	mg/dl	162	0.8	0.3	0.6	0.1
Gamma-Glutamyl Transferase	U/I	22	1.2	0.1	0.6	0.3
Globulin	g/dl	37	3.6	3.0	3.3	0.2
Glucose	mg/dl	162	219.8	35.1	109.3	21.
Potassium	mmol/l	162	4.8	2.8	3.6	0.
Sodium	mmol/l	162	168.3	132.4	145.9	8.
Inorganic Phosphorus	mg%P	22	8.3	6.7	7.5	0.
Total Protein	g/dl	162	7.8	5.7	6.8	0.
Triglycerides	mg/dl	1:	65.	20.0	36.0	15.
Urea	mg/dl	162	2 85.:	5 19.3	47.	10.

Fig. 7: 4 week Studies - Urinalysis - Males

Parameter	Units	No.	Maximum	Minimum	Mean	Std Dev
Specific Gravity		108	1.06	1.01	1.03	0.01
Urine Volume	ml	128	12.50	1.50	4.91	2.05

Fig. 8: 4 week Studies - Urinalysis - Females

Parameter	Units	No.	Maximum	Minimum	Mean	Std Dev
Specific Gravity	1.24 1 1 1 2 1 1 1 1 1 1 1 1 1 1	107	1.05	1.01	1.03	0.01
Urine Volume	ml	95	13.00	1.00	4.49	2.61

Fig. 9: 4 week Studies - Terminal Bodyweight - Males

TBW	No.	Maximum	Minimum	Mean	Std Dev
TBW	151	398.8	274.1	332.8	26.1

Fig. 10: 4 week Studies - Terminal Bodyweight - Females

TBW	No.	Maximum	Minimum	Mean	Std Dev
TBW	152	263.8	182.3	217.0	15.2

Fig. 11: 4 week Studies - Relative Organ Weights - Males (% of bodyweight)

Organ	No.	Maximum	Minimum	Mean	Std Dev
Adrenals	162	0.024	0.011	0.016	0.002
Brain	161	0.750	0.447	0.530	0.042
Epididymides	75	0.438	0.252	0.313	0.034
Heart	162	0.453	0.339	0.387	0.023
Kidneys	162	1.492	0.660	0.792	0.077
Liver	162	7.544	3.320	4.523	0.542
Pituitary	107	0.004	0.002	0.003	0.000
Spleen	162	0.368	0.157	0.252	0.029
Testes	162	1.448	0.912	1.110	0.082
Thymus	65	0.222	0.071	0.148	0.032
Thyroid	107	0.011	0.004	0.007	0.001

Fig. 12: 4 week Studies - Relative Organ Weights - Females (% of bodyweight)

Organ	No.	Maximum	Minimum	Mean	Std Dev
Adrenals	161	0.039	0.021	0.029	0.003
Brain	161	0.879	0.638	0.747	0.050
Heart	161	0.478	0.361	0.412	0.024
Kidneys	161	1.290	0.592	0.766	0.070
Liver	161	7.220	3.350	4.100	0.416
Ovaries	151	0.055	0.019	0.038	0.006
Pituitary	106	0.008	0.003	0.005	0.001
Spleen	161	0.427	0.254	0.322	0.034
Thymus	64	0.221	0.087	0.152	0.027
Thyroid	106	0.015	0.003	0.009	0.002
Uterus	116	0.569	0.108	0.194	0.065

Fig. 13: 4 week Studies - Microscopic Pathology - Males

Organs/Tissues	Number Examined	Diagnoses	Incidence Observed	
		DEACTIVE UNDERDINGUE		
Cervical nodes	136	REACTIVE HYPERPLASIA	17	12.50%
Colon	137	DISTENSION	7	5.11%
Duodenum	137	VILLOUS NECROSIS	1	0.73%
Eyes	87	ACUTE INFLAMMATION	1	1.15%
	87	HAEMORRHAGE	1	1.15%
Harderian glands	87	CHRONIC INFLAMMATION	22	25.29%
	87	PORPHYRIN ACCUMULATION	1	1.15%
Heart	157	CHRONIC INFLAMMATION	30	19.11%
lleum	137	DISTENSION	1	0.73%
Kidneys	157	CHRONIC INFLAMMATION	9	5.73%
	157	CHRONIC PROGRESSIVE NEPHROSIS	12	7.64%
	157	CORTICAL TUBULAR CELL BASOPHILIA	44	28.02%
	157	CORTICAL TUBULAR DILATATION	37	23.57%
	157	HYALINE CASTS	5	3.18%
	157	HYDRONEPHROSIS	1	0.64%
Liver	157	BILE DUCT PROLIFERATION	2	1.27%
	157	CENTRILOBULAR HEPATOCYTIC VACUOLATION	2	1.27%
	157	CHRONIC INFLAMMATION	65	41.40%
	157	CLEAR CELL CHANGE	13	8.28%
Lungs	157	AGGREGATIONS OF ALVEOLAR MACROPHAGES	13	8.28%
	157	ALVEOLAR HAEMORRHAGE	21	13.38%
	157	CHRONIC INFLAMMATION	104	66.24%
	157	EOSINOPHIL INFILTRATION	3	1.91%
	157	FRAGMENTS OF BONE	1	0.64%
	157	HAIR EMBOLUS	1	0.64%
	157	OEDEMA DERIBBONCHIAL LYMPHOID HYPERRI ASIA	4	2.55%
	157	PERIBRONCHIAL LYMPHOID HYPERPLASIA PNEUMONIA	21	13.38%
	157 157	VASCULAR MINERALIZATION	3 7	1.91% 4.46%
Lymph nodes	10	HAEMORRHAGE	2	20.00%
	10	REACTIVE HYPERPLASIA	2	20.00%
Mesenteric nodes	137	REACTIVE HYPERPLASIA	1	0.73%
Pancreas	. 87	CYSTIC CHANGE	1	1.15%
	87	EOSINOPHIL INFILTRATION	1	1.15%
Pituitary	86	DEVELOPMENTAL CYST/S	1	1.16%

Prostate	147	CHRONIC INFLAMMATION	15	10.20%
	147	OEDEMA	1	0.68%
Rectum	137	DISTENSION	2	1.46%
Seminal vesicles	70	COLLOID DISTENSION	10	14.29%
Stomach	137	CHRONIC INFLAMMATION	2	1.46%
	137	SQUAMOUS METAPLASIA OF MUCOSAL GLANDS	1	0.73%
Testes	157	SEMINIFEROUS TUBULES ATROPHY	1	0.64%
	157	TUBULAR GIANT CELLS	1	0.64%
Thymus	137	HAEMORRHAGE	2	1.46%
Thyrold	137	ECTOPIC THYMIC TISSUE	4	2.92%
Trachea	137	CHRONIC INFLAMMATION	1	0.73%
Urinary bladder	137	DISTENSION	3	2.19%
	137	PROTEINACEOUS PLUG	8	5.84%

Fig. 14: 4 week Studies - Microscopic Pathology - Females

Organs/Tissue	Number Examined	Diagnoses	Incidence Observed	%
Brain	157	HYDROCEPHALUS	1	0.64%
Cervical nodes	136	REACTIVE HYPERPLASIA	11	8.09%
Cervicarnoues	: 100		11	0.0370
Colon	137	DISTENSION	5	3.65%
	137	LYMPHOID HYPERPLASIA	1	0.73%
Eyes	87	ACUTE INFLAMMATION	1	1.15%
	87	CATARACT	1	1.15%
	87	DETACHMENT OF RETINA	1	1.15%
	87	KERATITIS	2	2.30%
Harderian glands	87	CHRONIC INFLAMMATION	16	18.40%
	87	HAEMORRHAGE	1	1.15%
Heart	157	CHRONIC INFLAMMATION	7	4.46%
lleum	137	LYMPHOID HYPERPLASIA	2	1.46%
Jejunum	137	LYMPHOID HYPERPLASIA	2	1.46%
Kidneys	157	CHRONIC INFLAMMATION	8	5.10%
	157	CHRONIC PROGRESSIVE NEPHROSIS	1	0.64%
	157	CORTICAL TUBULAR CELL BASOPHILIA	8	5.10%
	157	CORTICAL TUBULAR DILATATION	4	2.54%
	157	CORTICAL CYST	1	0.64%
	157	HYALINE CASTS	1	0.64%
	157	HYDRONEPHROSIS	2	1.27%
	157	MINERALIZATION	36	22.92%
	157	PELVIC EPITHELIAL HYPERPLASIA	3	1.91%
Liver	157	CHRONIC INFLAMMATION	65	41.40%
	157	HAEMORRHAGE	1	0.64%
	157	HEPATOCYTIC NECROSIS	2	1.27%
	157	CLEAR CELL CHANGE	6	3.82%
Lungs	157	AGGREGATIONS OF ALVEOLAR MACROPHAGES	11	7.01%
	157	ALVEOLAR EPITHELIALIZATION	2	1.27%
	157	ALVEOLAR HAEMORRHAGE	14	8.92%
	157	CHRONIC INFLAMMATION	99	63.05%
	157	EMPHYSEMA	1	0.64%
in a value on the control of the con	157	EOSINOPHILIC INFILTRATION	1	0.64%
	157	FRAGMENTS OF BONE	1	0.64%
	157	HAIR EMBOLUS	2	1.27%
	157	OEDEMA	4	2.55%
	157	PERIBRONCHIAL LYMPHOID HYPERPLASIA	21	13.38%
	157	PNEUMONIA	16	10.19%
	157	VASCULAR MINERALIZATION	3	1.91%

Lymph nodes	10	HAEMORRHAGE	1	10.00%
	10	REACTIVE HYPERPLASIA	4	40.00%
Ovaries	157	LUTEIN CYST	2	1.27%
	157	MINERALIZZATION	1	0.64%
Parathyroid glands	71	BRANCHIAL CYST/S	1	1.41%
Pituitary	86	DEVELOPMENTAL CYST/S	3	3.49%
Rectum	137	ACUTE INFLAMMATION	. 1	0.73%
	137	DISTENSION	2	1.46%
	137	LYMPHOCYTIC INFILTRATION	1	0.73%
	137	LYMPHOID HYPERPLASIA	11,	0.73%
Skeletal muscle	87	CHRONIC INFLAMMATION	1	1.15%
Skin	87	KERATIN CYST	. 1	1.15%
Spinal cord	136	EPIDERMOID INCLUSION CYST/S	1	0.74%
Spleen	157	CONGENITAL ABNORMALITY	1	0.64%
Stomach	137	SQUAMOUS METAPLASIA OF MUCOSAL GLANDS	1	0.73%
	137	ECTOPIC THYROID TISSUE	1	0.73%
	137	HAEMORRHAGE	1	0.73%
Thyroid	137	ECTOPIC THYMIC TISSUE	5	3.65%
Tongue	87	CYST/S	1	1.15%
Urinary bladder	137	EPITHELIAL HYPERPLASIA	1	0.73%
Uterus	137	ENDOMETRIAL CYST	1	0.73%
	137	GLANDULAR DILATATION	1	0.73%
	137	HYDROMETRA	9	6.57%